Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides

By R. D. Shannon

Central Research and Development Department, Experimental Station, E. I. Du Pont de Nemours and Company, Wilmington, Delaware 19898, U.S.A.

(Received 30 October 1975; accepted 9 March 1976)

The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925–945] are revised to include more unusual oxidation states and coordinations. Revisions are based on new structural data, empirical bond strength-bond length relationships, and plots of (1) radii vs volume, (2) radii vs coordination number, and (3) radii vs oxidation state. Factors which affect radii additivity are polyhedral distortion, partial occupancy of cation sites, covalence, and metallic character. Mean Nb⁵⁺-O and Mo⁶⁺-O octahedral distances are linearly dependent on distortion. A decrease in cation occupancy increases mean Li⁺-O, Na⁺-O, and Ag⁺-O distances in a predictable manner. Covalence strongly shortens Fe²⁺-X, Co²⁺-X, Ni²⁺-X, Mn²⁺-X, Cu⁺-X, Ag⁺-X, and M-H⁻ bonds as the electronegativity of X or M decreases. Smaller effects are seen for Zn²⁺-X, Cd²⁺-X, In³⁺-X, Pb²⁺-X, and Tl⁺-X. Bonds with delocalized electrons and therefore metallic character, *e.g.* Sm-S, V-S, and Re-O, are significantly shorter than similar bonds with localized electrons.

Introduction

A thorough and systematic knowledge of the relative sizes of ions in halides and chalcogenides is rapidly being developed by crystal chemists as a result of (1)extensive synthesis within certain structure types, e.g. rocksalt, spinel, perovskite and pyrochlore; (2) preparation of new compounds with unusual oxidation states and coordination numbers; and (3) the abundance of accurate crystal structure refinements of halides, chalcogenides, and molecular inorganic compounds. A set of effective ionic radii which showed a number of systematic trends with valence, electronic spin state, and coordination was recently developed (Shannon & Prewitt, 1969, hereafter referred to as SP 69). This work has since been supplemented and improved by studies of certain groups of ions: rare earth and actinide ions (Peterson & Cunningham, 1967, 1968); tetrahedral oxyanions (Kálmán, 1971); tetravalent ions in perovskites (Fukunaga & Fujita, 1973); rare earth ions (Greis & Petzel, 1974); and tetravalent cations (Knop & Carlow, 1974).

Further, the relative sizes of certain ions or ion pairs were studied by Khan & Baur (1972): NH_4^+ ; Ribbe & Gibbs (1971): OH^- ; Wolfe & Newnham (1969): Bi³⁺-La³⁺; McCarthy (1971): Eu²⁺-Sr²⁺; Silva, McDowell, Keller & Tarrant (1974): No²⁺. These authors' results have been incorporated here into a comprehensive modification of the Shannon-Prewitt radii.

In this paper the revised list of effective ionic radii, along with the relations between radii, coordination number, and valence is presented. The factors responsible for the deviation of radii sums from additivity such as polyhedral distortion, partial occupancy of cation sites, covalence, and metallic behavior (electron delocalization) will be discussed.

Procedure

The same basic methods used in SP 69 were employed in preparing the revised list of effective ionic radii (Table 1). Some of the same assumptions were made:

(1) Additivity of both cation and anion radii to reproduce interatomic distances is valid if one considers coordination number (CN), electronic spin, covalency, repulsive forces, and polyhedral distortion.*

(2) With these limitations, radii are independent of structure type.

(3) Both cation and anion radii vary with coordination number.

(4) With a constant anion, unit-cell volumes of isostructural series are proportional (but not necessarily linearly) to the cation volumes.

Other assumptions made in SP 69 have been modified:

(1) The effects of covalency on the shortening of M-F and M-O bonds are *not* comparable.

(2) Average interatomic distances in similar polyhedra in one structure are *not* constant but vary in a predictable way with the degree of polyhedral distortion (and anion CN). Both of these modified assumptions will be discussed in detail later.

The anion radii used in SP 69 were subtracted from available average distances. Approximately 900 distances from oxide and fluoride structures were used, and Table 2 lists their references according to CN and spin. These references generally cover from 1969 to 1975. The cation radii were derived to a first approximation from these distances, and then adjusted to be consistent with both the experimental interatomic distances and radii–unit cell volume ($r^3 vs V$) plots, as in

^{*} Polyhedral distortion was not considered in SP 69.

SP 69. Although such $r^3 vs V$ plots are not always linear (Shannon, 1975), their regular curvilinear nature still allows prediction of radii. This system is particularly accurate for radii in the middle of a series, and least reliable for large polarizable cations like Cs⁺, Ba²⁺, and Tl³⁺. Radii-volume plots were used by Knop & Carlow (1974) and Fukunaga & Fujita (1973) to derive radii of tetravalent cations. These radii were used along with experimental interatomic distances in deriving the final radii. Greis & Petzel (1974) derived rare earth radii in eight- and nine-coordination using accurate cell dimensions for rare earth trifluorides and distances calculated using the structural parameters of YF₃ and LaF₃. These radii were used in Table 1 after applying small corrections (+0.030 Å to ^{IX}La³⁺, $^{1x}Ce^{3+}$, $^{1x}Pr^{3+}$, and $^{1x}Nd^{3+}$; +0.025 Å to all other Greis & Petzel ^{IX}RE³⁺ radii, and 0.015 Å to all ^{VIII}RE³⁺ radii) for consistency with experimental interatomic distances and radii–CN plots.

Where structural data were not available or not accurate, plots of (1) radii vs unit cell volumes, (2) radii vs CN and (3) radii vs oxidation state, or combinations of these were used to obtain estimated values. Fig. 1 shows examples of radii–valence plots used to provide consistency between experimental radii and those anticipated from the regular nature of these plots. Cations whose final radii values were derived from both estimated values and experimental interatomic distances are: $vIOs^{5+}$, $vIOs^{6+}$, $vIOs^{7+}$, $vIRe^{4+}$, $vIRe^{5+}$, $vIRe^{6+}$, $vIRe^{7+}$, $vIRh^{4+}$, $vIIU^{4+}$, $vIIU^{5+}$, and $vIIU^{6+}$.

Fig. 2(*a*)-(*e*) shows plots of radii *vs* CN. Generally, it was assumed that radii-CN plots for two different ions do not cross. Radii for ${}^{IV}Cu^+$, ${}^{VI}Cu^+$, ${}^{IX}Rb^+$, ${}^{VNi^{2+}}$, ${}^{VII}Er^{3+}$, ${}^{VII}Yb^{3+}$, ${}^{VII}Tb^{3+}$, ${}^{XII}Nd^{3+}$, ${}^{IV}Cr^{4+}$,

Table 1. Effective ionic radii

CR crystal radius, IR effective ionic radius, R from $r^3 vs V$ plots, C calculated, E estimated, ? doubtful, * most reliable, M from metallic oxides.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ION	EC	CN	SP	Cƙ	'IR'	1 O N	EC	CN	S٩	CR	' IR '	10N	EC	CN	59	CR	1 [R 1
Abert Abert <th< td=""><td>AC+3 6P</td><td>P 6</td><td>V1</td><td></td><td>1.26</td><td>1.12 R</td><td>CL-1</td><td>3P 6</td><td>V1</td><td></td><td>1.67</td><td>1.81 P</td><td>GD+3</td><td>4F 7</td><td>v11</td><td></td><td>1.14</td><td>1.00</td></th<>	AC+3 6P	P 6	V1		1.26	1.12 R	CL-1	3P 6	V1		1.67	1.81 P	GD+3	4F 7	v11		1.14	1.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AG+1 40	010	11		.81	.67	CL+5	35 Z	111PY		.26	.12	1		1114		1.193	1.053 R
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			IV		1.14	1.00 C	CL+7	2P 6	1.4		•22	.08 *		48.3	IX		1.247	1.107 RC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V		1.23	1.09 C	CH+3	5F 7	vi l		1.11	.97 R	GE+4	3010	iv		.530	.390 .
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			v1		1.29	1.15 C	CH+4	5F 6	vi		.99	.85 R			vi		.670	.530 R#
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			114		1.36	1.22			V111		1.09	.95 R	н + L	15 0	1		24	÷.38
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			VIII		1.42	1.28	Ç0+2	30 7	1.4	нs	.72	•58	ис		11		04	18
Acc > 40 b i voo i i i voo i i i voo i i voo i vo	AG72 40		1424		1.08	.94			v.	15	.79	.67 C	1	4614	vi		.85	71 R
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AG+3 40	D 8	IVSQ		.81	.67				нs	.885	.745 R#			V11		.90	.76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			VI		.89	.75 R			V111		1.04	.90			VIII		. 97	.83
vi i i i i i i i i i i i i i i i i i i i	AL+3 21	P 6	14		. 62	.39 *	CU+3	30 6	¥1	45	.085	• 545 K#	HG+1	03 1	***		1.33	1.19
AH+2 57 7 VIII 1.35 1.21 CH+2 JD VI H5 6.67 -33 R VI 1.10 .486 AH+3 57 6 VI 1.115 .475 R .406 <			vi		.675	.535 R*	C0+4	3D 5	1 V		.54	.40	HG+2	5010	ii		.83	.69
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AM+2 51	F 7	114		1.35	1.21			VI	HS	.67	.53 R			IV		1.10	.96
AM+3 5F 6 Vi 11115 1.005 R CA+3 3D 3 VI VI 1.053 + 615 N HO+3 4FLD VI 1.001 R AM+4 5F 5 VII 1.00 - 65 R CA+3 3D 3 VI VI 053 + 61 N IX 1.212 1.1072 R AX+4 5F 5 VII 1.00 - 65 R CA+3 3D 3 VI 053 + 61 N IX 1.212 1.1072 R AX+3 5D 1 VI 65 + 35 R VII 053 + 64 VI 1.45 + 55 Z IIIPV .58 + 64 VI AX+3 5D 0 VI 60 + 64 C VII 61 + 64 VI 60 + 64 VI .60 + 64 C AX+3 5D 0 VI 60 + 64 C VIII 1.61 + 64 VI 60 + 64 C I +7 4010 VI 60 + 64 C AU+3 50 0 VI 61 + 64 VI I.60 + 178 C I +7 4010 VI 60 + 64 C I +7 4010 VI 60 + 64 C AU+3 50 0 VI 61 + 64 C IX I.69 + 168 L I.77 C I +74 50 0 VI 60 + 64 C AU+3 50 0 VI 61 + 64 C IX I.69 + 168 L IX I.49 + 168 L 77 + 168 VII I.61 + 162 C VI 62 + 64 E IX I.69 + 168 L IX I.49 + 168 L IX + 168 L IX + 168 L IX + 168 L IX + 168 L<			VIII		1.40	1.26	CR+2	30 4	VI.		.87	.73 E			VI		1.28	1.16 8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AN+3 51	F 6	vî		1.115	.975 R	CR+3	3D 3	VI		.755	.615 R*	H0+3	4F10	vi		1.041	.901 R
At# 5 5 vi 1.89 .89 Vi .60 .55 R IX 1.212 1.072 R AS-3 55 2 vi			1111		1.23	1.09	CR+4	3D 2	17		.55	.41			VIII		1.155	1.015 R
As-3 as 2 viiii 1.107 08 a Core 3 ave 1 viiii 1.485 ave 1.425 K I = 1.5 p. 6 vii 1.460 2.256 ave 1.460	AM+4 51	F 5	VI		. 99	.85 R			VI		.69	•55 R	-		IX		1.212	1.072 R
ASS-5 DID 1 V -475 -353 R * VIII -71 -37 -37 -1 -5 55 2 111PY -36 -44 -44 AI-T 7010 VI -76 -62 -64<		• •	VI I I		.72	• 95 • 58 A	CK+5	30 1	11		. 485	• 345 K	1 1 -1	5P A	ŵ.		2.06	2.20 4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AS+5 30	DID	iv		.475	.335 R.			vin		.71	.57	i +5	55 2	İİLPY		.58	.44 *
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	11		.60	.46 C*	CR+6	3P 6	11		.40	.26			VI		1.09	.95
	AT+7 50	010	VI		.76	-62 A		£0	VI.		.58	, 44 C	1 1 +7	4D10	14		• 56	.42
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AU+1 50	010	1950		.82	.68	L 13+1	3P 6	vin		1.88	1.74	IN+3	4010	iv		.76	.62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			vi		.99	.85 A			1x		1.92	1.78	1		vi		.940	.800 R*
g + s s i <td>AU+5 50</td> <td>0.6</td> <td>VI.</td> <td></td> <td>• 71</td> <td>.57</td> <td></td> <td></td> <td>ž.</td> <td></td> <td>1.95</td> <td>1.81</td> <td>1</td> <td>-</td> <td>1114</td> <td></td> <td>1.06</td> <td>.92 RC</td>	AU+5 50	0.6	VI.		• 71	.57			ž.		1.95	1.81	1	-	1114		1.06	.92 RC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 +3 1	s z	111		•15	.01	l		X1		2 02	1.85	18+3	50 6	VI VI		.82	.08 E
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			vi		.41	.27 C	cu+i	3010	îi		.60	.46	18+5	5D 4	vi		.71	.57 EM
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	84+2 5	P 6	¥1		1.49	1.35			iv		.74	.60 E	K +1	3P 6	1 V		1.51	1.37
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			114		1.52	1.38 C			VI		.91	.77 E	1		VI.		1.52	1.38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.56	1.42	ÇU+2	30.9	1950		• /1	.57 +			VII		1.60	1.40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			x		1.66	1.52			v		.79	.65 .	1		IX		1.69	1.55
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			XI		1.71	1.57			VI		.87	.73			×		1.73	1.59
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8542 1	• •	X11		1.75	1.61 C	CU+3	3D 8	VI	LS	.68	-54		4010	X11		1.172	1.032 8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0042 1	3 2	iv		.41	.27 +	DY+2	4F10	vi		1.21	1.07	1	4010	vii		1.24	1.10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			VI		.59	.45 °C			VII		1.27	1.13			1114		1.300	1.160 R
VIII 1.1.1 1.1.2 A UVS AF Y 1.1.22 -7.2 A XIII 1.1.60 1.1.60 YIII YIII 1.1.60 YIII YIIII YIIIII YIIIII YIIIII YIIIII YIIIII YIIIII YIIIII YIIIIII YIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	B1+3 6	S 2	<u>v</u> .		1.10	.96 C			VIII		1.33	1.19			ix		1.356	1.216 R
Bits 55 Did Vit 50 76 E Vili 167 167 168			VI VI I I		1.31	1.03 R#	07+3	4F 9	VI I		1.052	-912 K			x 11		1.50	1.36 C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	81+5 5	D10	vi		.90	.76 E	1		viit		1.167	1.027 R	L1+1	15 2	1.4		.730	.590 *
akt 4 57 Y 1 97 83 R Ekt 3 AF11 Y1 1030 97 K K K Y1 1030 97 K Y1 1030 K Y1 1031 Y1 1030 K Y1 1031 Y1 1032 K Y1 1032 K Y1 1031 Y1 1031 Y1 1031 Y1 1031 Y1 1031 Y1 1032 K Y1 1031 Y1	BX+3 5	F 8	VI		1.10	.96 R			1×		1.223	1.083 R			VI		. 90	.76 +
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ůK+4 5	F 7	VI		.97	.83 R	ER+3	4F11	VI		1.030	.890 R	1.11+3	4E14	VIII		1.001	- 92 C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	88-1 4	P 6	VI		1.82	1.96 P			viii		1.144	1.004 R			viit		1.117	.977 R
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BR+3 4	P 2	IVSQ		.73	. 59	1		1X		1.202	1.062 R			1 X		1.172	1.032 R
bmr Juli 1.3 1.23 <	BR+5 4	5 2	111PY		.45	• 31	EU+2	4F 7	VI.		1.31	1.17	MG+2	2P 6	IV		.71	.57
$ \begin{array}{c} C * + 15 2 111 & -06 & -08 & 14^{-1} & 1.44 & 1.35 & 144 & 1.36 & 144 & 144 & 1.46 & 1.35 & 144 & 144 & 1.46 &$	8K+1 3	010	11		.53	.39 4			VIII		1.39	1.25	1		vı.		.860	.720 +
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C +4 1	S 2	iir		.06	08			1x		1.44	1.30			VIII		1.03	.89 C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			14		.29	.15 P			x		1.49	1.35	MN+2	30 5	11	HS	.80	.66
Chi Li 20 Li 20 <thl 20<="" th=""> Li 20 Li 20 <</thl>	C 4 4 2 3		VI V1		.30	-16 A	EU+3	4F 6	VI		1.087	.947 К 1.01	1		v,	15	.81	.15 C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LATE 3		vii		1.20	1.06 *	1		viir		1.206	1.066 R	I		••	HS	.970	.830 R+
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			VIII		1.26	1.12 *	1		1 X		1.260	1.120 R			V11	нs	1.04	.9D C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			IX		1.32	1.18	۴-۱	2P 6	11		1.145	1.285	80.43	30 4	VIII		. 72	.96 K
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			x 11		1.48	1.34 C			iv		1.17	1.31	1	30 4	vı.	LS	.72	.58 R
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CD+2 4	D10	IV		.92	.78			V L		1,19	1.33	1			нs	.785	.645 R*
VI 1.007 .V3 FE+2 JD 6 IV H3 .77 .23 HM+5 JD 2 V .67 .53 A VII 1.24 1.00 C IVS IVS .77 .64 E HM+5 JD 2 V .67 .53 A XII 1.25 IVI .15 1.01 R VI H5 .76 A E HM+5 JD 1 V .53 A VI 1.25 IVI 1.15 1.01 R VII H5 .60 C .92 C .90 P .97 C .93 A VII 1.21 1.07 E FE+3 JD 5 IV H5 .63 A+9 P MO+3 A 3 VI .83 A+9 P IX 1.33 L25 VI L5 .69 A .55 R MO+4 A 0 3 VI .79 O .650 AM IX 1.33 L25 VI L5 .69 A .55 R MO+4 0 P 0 IV .60 A+6 R XII 1.48 .39 C FE+4 JD 0 VII .52 A .78 R MO+6 P 0 IV .59 R+6 R VII 1.01 A 77 R FE+6 JD 2 VI .79 A .65 R VI .60 A VI .59 R+6 R XII 1.28 L1A GF+3 50 IV .97 R .60 A VI .73 A5 .65 R+7 XII 1.28 L4A GA+3 JDIO IV .60 A <t< td=""><td></td><td></td><td>v</td><td></td><td>1.01</td><td>.87</td><td>F +7</td><td>15 2</td><td>V1</td><td></td><td>•22</td><td>.08 A</td><td>MN+4</td><td>30 3</td><td>14</td><td></td><td>.53</td><td>.39 R</td></t<>			v		1.01	.87	F +7	15 2	V1		•22	.08 A	MN+4	30 3	14		.53	.39 R
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			VI 1		1.09	1.03 C	FE+2	30 6	1420	HS	.78	.03	MN+5	30 2	11		.47	.33 R
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			viii		1.24	1.10 č			vi	LS	.75	.61 E	MN+6	30 I	iv		.395	.255
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			X11		1.45	1.31	1			HS	.920	.780 R#	HN+7	3P 6	11		.39	.25
VIII 1.253 1.045 FEFS 3D 2 V 1.05 22 256 MOL 0.30 90 650 NU VIII 1.330 1.268 VI 1.5 60 555 R MOL 50 NU 60 640 840 640 840 640 840 860 840 860 840 860 840 860 840 860 840 860 840 860 840 860 860 840 860 840 860 860 860 840 860 860 870 860 870 860 870 <td< td=""><td>CE+3 6</td><td>\$ 1</td><td>VI.</td><td></td><td>1.15</td><td>1.01 R</td><td>6</td><td>30 5</td><td></td><td>HS</td><td>1.00</td><td>.42 0</td><td>MDA 3</td><td>40 3</td><td></td><td></td><td>.80</td><td>.40 A</td></td<>	CE+3 6	\$ 1	VI.		1.15	1.01 R	6	30 5		HS	1.00	.42 0	MDA 3	40 3			.80	.40 A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			viii		1.283	1.143 R			v		.72	.58	ND+4	40 2	vi		.790	.650 RM
X 1.39 1.25 HS .785 .645 R* VI .75 .61 R CE+4 5P 6 VI 1.01 .87 R FE+4 30 4 VI .725 .55 R VI .73 .50 R* CE+4 5P 6 VI 1.01 .87 R FE+6 30 2 IV .39 .25 R VI .73 .59 R* X 1.21 .07 R FE+6 30 2 IV .39 .25 R VI .73 .59 R* X 1.22 1.40 FR+1 6P 6 VI 1.94 1.80 A VI .73 .59 R* XII 1.28 1.14 GA+3 3DIO IV .60 .47 P N -3 2P 6 IV 1.32 1.46 CF+4 5F 8 VI .90 .95 R V .69 .55 N +3 2S 2 VI .30 .16 A			IX		1.336	1.196 R	1		V L	LS	.69	.55 R	MO+5	4D 1	LV		.60	-46 R
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			×		1.39	1.25	1			HS	.785	•645 R*	1 mo	40 4	VI		.75	.61 R
VIII 1.11 .97 FE+6 30 12 73 55 R# x 1.21 1.07 FR+1 6F 1.94 1.80 A VI .67 .73 xII 1.28 1.14 GA+3 3010 IV .61 .47 N -3 2P 6 IV 1.32 1.46 CF+3 6D IVI 1.09 .95 R V .60 .55 N +3 25 VI .32 1.64 CF+3 5D IVI 1.32 1.46 0.16 .47 N -3 2P 1.64 .66 .65 N +3 25 2VI .30 .16 A CF+3 5F VI .96 .620 R# N 51 2 .11 .044 -1.104	C 6 4 4 6		×11		1.01	.87 R	FE+4	30 4	VIII	u 2	.725	585 R	,		v		.64	.50
x 1.21 1.07 FR+1.6P.6 VI 1.94 1.80 VII .67 .73 XII 1.28 1.14 GA+3 3010 IV .61 .47 N -3 2P.6 IV 1.32 1.46 CF+3 50 I VI 1.09 .95 R V .69 .55 N +3 2S 2 VI .30 -16 A CF+4 5F S VI .96 .821 R V .609 .620 R* N 55 II .044 -1.04			vin		1.11	.97 R	FE+6	30 2	iv		. 39	.25 R	1		ŶI.		.73	.59 R.
XII 1.26 1.14 GA+3 JOID IV 0.1 -4 N -3 CF b IV 1.32 1.40 CF+3 6D I VI 1.09 .95 R V .60 .55 N +3 Z5 Z VI .30 .16 A CF+4 5F 8 VI .961 .821 R VI .760 .620 R* N +5 IS Z III .044 104			x		1.21	1.07	FR+1	6P 6	14		1.94	1.80 A	1		VI1		.87	.73
CF+4 5F 8 VI061 .821 R VI .760 .620 R* N +5 15 2 111 .044104			X11 VI		1.09	1.14 .95 R	GA+3	3010	, IV		.61	.55	N +3	25 2	vi		.30	.16 A
	CF+4 5	F8	vi		.961	.821 R	1	_	1V		.760	.620 R#	N +5	15 2	e i î î		.044	104

Table 1 (cont.)

ION	EC	CN	SP	CR	• IR •	10N	£C	CN	SP	CR	"IR"	10N	EC	CN	SP	CR	·IR·
NA+1	2P 6	IV		1.13	.99	PR+3	4F 2	V I		1.13	.99 B	10+4	40 3	V1		.785	.645 RM
		v		1.14	1.00			vi 11		1.266	1.126 R	TC+5	4D 2	Vİ		•74	.60 ER
		11		1.16	1.02			1X		1.319	1.179 R	TC+7	4P 6	11		-51	•37
		V11		1.26	1.12	PR+4	4F 1	VI		.99	•85 R	T C-3	F O 4	VI			
		11		1.38	1.24 C	PT+2	50.8	1720		.74	-60	TE+4	55 2	iii		.66	.52
		XII		1.53	1.39			VI		.94	.80 A			IV		.80	.66
NB+3	40 2	V1		.86	.72	PT+4	5D 6	11		.765	.625 R			V1		1.11	•??
NB+4	40 1	VI		.82	-68 RE	PT+5	50 5	V1			.57 EK	1 1640	4010	11		.70	
N8+5	4P 6	14		. 62	.44 C	PU+4	5F 4	vi		1.00	.86 R	TH+4	6P 6	vi		1.08	.94 C
		vi		.78	.64			1111		1.10	.96			V111		1.19	1.05 RC
		VI I		.83	.69 C	PU+5	5F 3	VI		.88	.74 E	1		IX		1.23	1.09 *
		VIII.		.88	.74	PU+6	5F 2	VI		.85	•71 R			X I		1.32	1.18 6
NU+2	46 4	1 X		1.49	1.35	RAT2	0F 0	x11		1.84	1.70 R			xii		1.35	1.21 C
ND+3	4F 3	vi		1.123	.983 R	RB+1	4P 6	¥1		1.66	1.52	T1+2	30 2	1 V		1.00	.86 E
		V111		1.249	1.109 R*			VII		1.70	1.56	1 11-3	30 1	VI		.810	.670 R*
		1X		1.303	1.163 K			11		1.77	1.63 8	1	38 0	1.4		. 50	.51 6
NI+2	3D 8	îv		.69	.55	i i		x		1.80	1.66			Ŷ1		.745	.605 R*
		IVSQ		.63	.49			X I		1.83	1.69			VIII		.88	
		¥		.77	.63 E			XII		1.86	1.72	1111	65 Z	VI		1.64	1.50 K
N 7 4 3	30 7			.830	.56 R#		50 3	×1 v		.77	.63 RM			x11		1.84	1.70 RE
		••	нs	.74	.60 E	RE+5	50 Z	vi		.72	.58 E	TL+3	5010	IV		.89	.75
N I + 4	3D 6	٧I	LŠ	.62	.48 R	RE+6	5D 1	V 1		.69	.55 E			V1		1.025	.885 R
NO+2	5F14	V1		1.24	1.1 E	RE+7	5P 6	11		.52	.38	1 784.7	4613	VIII		1.17	1.03
NP+2	56 4	VI VI		1.15	1.01 8	84+3	40.6			.805	-665 R	1 1/112	4613	vii		1.23	1.09
NP+4	5F 3	vi		1.01	.87 R	RH+4	40 5	vi 👘		.74	.60 RM	T M+3	4F12	VI		1.020	.880 R
		VIII		1.12	.98 R	RH+5	4D 4	11		.69	.55			V111		1.134	
NP+5	5F 2	VI		.89	.75	RU+3	4D 5	V1		•82	•68 •20 PH		66 3	1.4		1.165	1.025 8
NP+D	5P 1	V1		.85	.71 A	BU+5	40 3	vi		.705	.565 ER	U +4	SF 2	vi		1.03	.89
0 - 2	2P 6	ii		1.21	1.35	RU+7	4D I	1V		. 52	.38			V11		1.09	.95 E
		111		1.22	1.36	RU+8	4P 6	17		.50	.36			VIII		1.14	1.00 8*
		IV		1.24	1.38	5-2.	30 6	V1 V7		1.70	1.84 P			11		1.31	1.17 E
		vin		1.28	1.42	5 +6	2P 6	iv		.26	.12	U +5	5F 1	VI		.90	.76
OH-1		ii		1.18	1.32			¥1		.43	.29 C	1		114		.98	.84 E
		111		1.20	1.34	58+3	5S 2	IVPY		.90	.76	0 **	6P 6	11		.59	.52
		14		1.21	1.37 5			v v t		.90	.76 4			vi		.87	.73 •
05+4	50 4	vi		.770	.630 RM	\$8+5	4010	vi		.74	.60 +	1		VII		.95	.81 E
05+5	5D 3	VI.		.715	.575 E	SC+3	3P 6	1 V		.885	.745 R.			V111		1.00	.86
05+6	5D 2	¥.		.63	.49	66-3		VIII		1.010	-870 R*	V +2	30 3			.780.	./9 .640 B*
ns+7	50 1	V1		- 665	• 575 E	SE+4	45 2	vi		.64	.50 A	V +4	30 1	v		.67	.53
OS+8	5P 6	iv		.53	.39	SE+6	3010	ĪV		.42	.28 *			VI		.72	.58 R*
P +3	3S 2	1 V		.58	.44 A			11		.56	.42 C			VIII		• 86	•72 E
P +5	2P 6	14		.31	.17 •	51+4	24 6	14		. 540	.20 -	1 '''	30 0	v		.60	.46 *
		v1		.52	.38 C	SM+2	4F 6	vii		1.36	1.22	1		ŶI.		.68	.54
PA+3	5F 2	VI		1.18	1.04 E	1		1111		1.41	1.27	H +4	5D 2	14		.80	.66 RM
PA+4	6D 1	VI		1.04	.90 R			1×		1.46	1.32		5D 1			. 16	.62 K
PA+5	6P A	V1 V1		.92	.78	3773	45.5	vii		1.16	1.02 E	1 7	,, ,	v.		. 65	.51
	•. •	vin		1.05	.91	1		VIII		1.219	1.079 R	1		1 1		• 74	.60 *
		IX		1.09	.95			1X		1.272	1.132 R	XE+8	4010	- IV		• 54	•40
PB+2	6S 2	IVPY		1.12	-98 C	5446	4010	X11 1V		1.38	1.24 U	Y + 3	4P 6	vi		1.040	.900 R*
		vit		1.37	1.23 C	3	4010	v		.76	.62 C	1 .		11V		1.10	.96
		V111		1.43	1.29 C	1		VI IV		.830	.690 R.	1		VIII		1.159	1.019 R*
		IX		1.49	1.35 C	1		V11		.89	.75	V8+2	4F14	. vî		1.16	1.02
		÷.		1.59	1.45 0	58+2	4P 6	vi		1.32	1.18			V11		1.22	1.08 E
		xii		1.63	1.49			v11		1.35	1.21			V111		1.28	1.14
P8+4	5010	1 V		.79	.65 E	i		VIII		1.40	1.26	YB+3	4F13	· V1		1.008	•868 R*
		¥.,		.87	•73 E	i i		1 X		1.50	1.36 0			viir		1.125	.985 R
		vilt		1.08	.94 R	1		211		1.58	1.44 C			1 X		1.182	1.042 R
PD+1	4D 9	11		.73	.59	TA+3	5D 2	VI		.86	.72 E	2N+2	3010	11		.74	.60 •
PD+2	4D 8	IVSQ		.78	.64	TA+4	5D 1	VI		.82	•68 E			¥.,		- 82	•68 * 740 P#
B0+ -	40 7	AT 1		1.00	.80	14+5	28 6	**		. /8	.69	1		vin		1.04	.90 C
PD+4	40 A	vi		.755	.615 R	1		viiı		.88	.74	ZR+4	4P 6	iv		.73	.59 R
PH+3	4F 4	vi		1.11	.97 R	T8+3	4F 8	V1		1.063	.923 R	1		¥.		-80	-66 C
		VII1		1.233	1.093 ƙ	1		VII		1.12	.98 E	1		V1 V11		. 56	•12 K#
P0+4	65 7	VI		1.08	.94 R			1X		1.235	1.095 R	1		viir		.98	.84 *
FUT4		vin		1.22	1.08 R	T8+4	4F 7	VI		.90	.76 R	1		1 X		1.03	.89
					47 4			V111		1.02	. 88						

^{VIII}V⁴⁺, ^{IV}Pb⁴⁺, and ^XTh⁴⁺ obtained from these plots were used to help determine the values in Table 1. The first estimate of ^{VIII}V⁴⁺ was made from distances in $C_{32}H_{28}S_8V$ (Bonamico, Dessy, Fares & Scaramuzza, 1974).

Another method used to estimate radii was based on the empirical relationship between interatomic distances and bond strengths. Brown & Shannon (1973) derived these relationships for the cations in the first three rows of the periodic table from a large number of experimental interatomic distances. These curves can be used to calculate hypothetical distances for cations in any coordination (Brown & Shannon, 1973; Shannon, 1975; Brown, 1975). Examples of cations whose radii were calculated in this way are: $^{IV}Mn^{2+}$, $^{VI}Be^{2+}$, $^{V1}B^{3+}$, $^{V1}P^{5+}$, $^{V1S}6^+$, $^{VIII}Mg^{2+}$, and $^{VIII}Fe^{2+}$. These are marked with a *C* in Table 1. In certain cases, these values were combined with known structural data (see Table 2) to obtain the radii in Table 1. Although the majority of radii were derived from oxides and fluorides,* some were taken from chlorides, bromides, iodides, and sulfides. For large electropositive cations with highly ionic bonds, very little covalent shortening is believed to occur and radii derived from these other compounds should differ only slightly from those derived from fluorides and oxides. Examples are divalent rare earths such as Yb^{2+} , Tm^{2+} , Dy^{2+} , Sm^{2+} , Nd^{2+} and the ions Am^{2+} , Ac^{3+} , Np^{3+} , and U^{4+} .

Another useful scheme for estimation of radii is the comparison of unit-cell volumes of compounds containing cations of similar size. McCarthy (1971) prepared a number of isotypic Sr^{2+} and Eu^{2+} ternary oxides and generally found the unit cells of the Sr^{2+}

^{*} Because of covalency differences in M-O and M-F bonds, oxide distances were emphasized. Therefore the radii in Table 1 are more applicable to oxides than fluorides. This subject is treated further in the discussion *Effects of covalence*.

Table 2. References for Table 1

The references here and in Tables 4, 5, 6 and 8 are abbreviated according to Codens for Periodic Titles (1966).

	i	
68 JINCA 30 823 AC CL3	71 JCPSA 55 1093 BA w 04 71 Ammia 56 758 88 C 03	72 MR8UA 7 1281 CL(+7) -0 71 JC514 1971 1857 CL(+7) -0
71 INOCA 10 719 AG FE 02	71 ZAACA 386 1 BA2 CO 04	62 ACCRA 15 18 H3 O CL 04 (-80 C)
72 ZAACA 193 ZOO SE AGO 06	73 ACBCA 29 2009 BA2 TI 04	69 AC8CA 25 1875 N H3 O H CL 04
73 ZENBA 288 263 84 466 04	BA+2 IX	73 ACSAA 27 2309 (P84 (0 H)413 C 03 (CL 04)10
46+1 19	71 ZAACA 386 1 BA2 CO 04	.6 H2 0
71 JSSCB 3 364 AG2 CR 04	73 ACSAA 27 1695 8A TE (52 03)2.2 H2 0	73 ACSAA 27-3523 CU (C3 H4 N2)4 (CL 04)2
AG+1 IVSQ	73 ACSAA 27 1653 8A TE (52 03)2.3 H2 0	(M++ VI
42 JACSA 64 354 AG3 AS 04	BA+2 X	67 INUGA 3 327 R (CM+4)
69 ACSAA 23 2261 AG2 5 03	70 ZKKKA 131 161 BA3 (V 04)2	CU+2 IV
AG+1 V	70 ACBCA 26 105 8A3 SI4 NB6 D26	69 ZAACA 369 306 CO VZ U4
70 JSSCB 1 484 AG6 M010 033	67 Bufca 90 24 8A P2 D6	CD+2 V
AG+1 VI	BA+2 XI	72 ACBCA 28 2883 CO2 P2 O7 ALPHA
J2 ZKKKA 82 161 AG2 504	71 ACBCA 27 1263 BA FE2 04	CO+2 VI
47 JACSA 69 222 AG3 PO4	BA+2 X11	68 ZAACA 358 125 CO SE 04
71 JSSCB 3 364 AG2 CR 04	TO ACBCA 26 102 BA5 TA4 015	68 ZKKKA 126 299 CO GE 03
69 ACACB 25 5116 AG2 CR2 07	72 CSCMC 1 1 BA TIG D13	70 CJCHA 48 881 CO3 AS2 08
70 JSSCB 1 484 AG2 M0 04	71 MRBUA 6 725 8A CA FE4 D8	70 JCPSA 53 3279 84 CO F4
AG+1 VII 70 JSSCB 1 484 AG6 M010 033	75 ACBCA 31 596 K2 BA CU (N 02)6	T3 ACBCA 29 2304 C03 V2 08
AG+1 VIII AG+1 VIII AG ACCPA 19 180 AC7 M 011	69 ACBCA 25 1647 SR BE3 04	REF 1 CO2 SI 04 72 ACRCA 28 2893 CO2 SI 04
AG+2 [VSQ	86+2 1V	70 INOCA 9 151 CO (OMPA)3 (CL 04)2
7] JP(SA 32 543 AG 52	62 SPHCA 6 733 NA BE P 04	23 408CA 29 2741 CO SI 54.4 H2 D
AG+2 VI	68 AC8CA 24 672 LA2 BE2 05	74 ANNIA 59 475 CO2 SI 04
71 JPCSA 32 543 AG F2	68 AC8CA 24 807 CS BE F3	74 JCNLB 4 55 C16 H18 CD 06
AG+3 1950	69 ACBCA 25 1647 SR 883 04	CO+2 VIII
65 ACCRA 19 180 AG7 N 011	71 SPHCA 15 999 FE3 BE 513 09 (F;0H)2	66 INDCA 5 1208 (AS(C6 H5)4)2(CO(N 03)4)
AL+3 IV	72 SPHCA 16 1021 BE2 S1 U4	CO+3 VI LS.
67 ACCRA 23 754 NA TI2 AL5 012	72 ACBCA 28 1899 AL2 BE3 S16 D18	68 CCJDA 1968 871 CO (N O3)3
65 NJMMA 1968 80 CA AL 804	73 ACBCA 229 2976 NA3 BE THIO F45	68 CJCHA 46 3472 CO3 04
70 Agaga 26 1230 ga al4 07	59 ACCRA 12 634 BE ACETATE	66 JACSA 88 2951 CO (C5 H7 0213
70 NJHNA 1970 547 CAL2 AL14 033	67 2KKKA 125 423 CS BE4 8(12-X) AL4 028 H2	74 ACBCA 30 822 CD (C5 H7 02)3
71 SPHDA 15 905 CA4 AL6 010 (0H)6	74 ACBCA 30 396 NA6 (S116 AL2(8E(0H)2 039)	69 JACSA 91 6881 (N H4)6 (H4 CO2 NO10 038)
71 SPHDA 15 995 CA AL4 D7 71 ACBCA 27 1826 BETA-AL2 03	74 ACBCA 30 2434 L12 BE SI 04	74 ZAACA 408 97 K COZ 04
72 JS568 4 60 AG ALIL UT7 AL+3 V AB ACOCA 24 JE30 (MC CE) AL3 CL D 00	14 AMAIA 59 1267 CA 862 92 08 81+3 9 40 55504 7 1707 812 9 04	71 ZAACA 386 1 BA2 CO 04
68 AMMIA 53 1096 ALZ PD4 (0H)3	70 ACSAA 24 384 812 D3 ALPHA	74 ZAACA 408 75 CS2 CO 03
71 AMMIA 56 18 NA3 AL2 L13 F12 72 JSSCB 4 11 NO AL 03	70 ACSAA 24 384 812 03 ALPHA 71 JPCSA 32 1315 81 FE 03	
72 JSSCB 4 :60 AG AL11 017 58 ACCRA 5 A86 NG A12 D6	B1+3 VIII 72 MORIA 7 1025 BL TITANATES	74 ZAACA 40B 97 K CO2 04
72 ACBCA 28 1899 AL2 BE3 SIG 018 66 JACSA 88 2951 AL(ACAC)3	B1+5 VI R3 V5 V (B42 LA BI D6)	71 ANCPA 6 41 TA2 CR 06 69 ACRCA 25 925 R VS 0 FLECTRONS
73 AC6CA 20 2292 AL P 04.2 H2 0	BK+4 VI	CR+3 VI
67 2888A 125 423 CS 854 8112-X1 AL4 028 H2	67 INUCA 3 327 R (BK+4)	69 MRRUA 6 621 NA3 CR F6
74 ACBCA 30 1317 NA ALS (P 0412 (O H)4	BR+3 IV SQ	TO INDCA 9 2228 NA3 (CR MO 06 024 H01.8 H2 0
74 2868A 139 129 AL (O H)3	69 JCSIA 1969 1936 K BR F4	TO ACSAA 24 3627 NA2 CR3 08 0 H
AM+2 VI1	BR+5 111	73 NRBUA 8 593 CA CR F5
72 JINCA 34 3427 AM 12	69 ACACB 25 621 SM (BR 0313.9H2 0	65 ACCRA 19 131 CR (C5 H7 O2)3
AN+2 VIII	67 ACSAA 21 2834 HG BR D3	CR+4 IV
73 JINCA 35 483 AN 882	BR+7 IV	74 ZAACA 407 129 BA2 CR 04
73 JINCA 35 483 AM CL2 AM93 VIII		72 NRBUA 7 157 CR 02
72 INDCA 11 2233 AM2 (5 D4)3-8H2 G	71 JNBAA 75A 27 CA C 03	67 STGBA 3 1 R3 VS V (FLUORIDES)
AM44 VI	73 Annia 58 1029 ng C 03	CR+6 IV
67 ADCSA 71 228 BA AM 03	67 PRLAA 92 125 MM C D3	68 CJCHA 46 935 K2 CR2 07
67 INUCA 3 327 R (8K+4)	75 Acbca 31 890 NA2 C D3.H2 D	70 ACBCA 26 222 CR 03
AS+5 IV	CA+2 VI	69 JCSIA 1969 1857 (NH4)2 CR 04
69 ZKKKA 130 231 ZN2 CU AS2 08	68 NJMAA 1968 80 CA AL B D4	69 ACACB 25 S116 AG2 CR2 D7
68 CJCHA 46 917 CU3 AS2 08 63 BAPCA 11 361 MG2 AS2 07 49 ACBCA 35 1544 CH 44 6 04 3 43 0	69 ALBCA 25 1933 CA NA (H2 P U2)3 57 JCPSA 26 563 CA (O H)2	70 SPHDA 15 530 K2 CR4 013 70 ANHIA 55 784 PB2 CR2 05
69 ACBCA 25 2658 ZR (H AS 0412 H2 0 AB AMBIA 53 1841 HN2 D H AS 04	CA+2 VII 71 CICHA 49 1036 CA3 452 08	71 SPHCA 15 B20 NA2 CR2 07.2 H2 0
63 CAMIA 7 561 CA CU AS 04 0 H	71 ACBCA 27 2311 CA2 AL FE 05	73 ACBCA 29 890 NA2 CR2 07 ALPHA
70 ACBCA 26 1584 NA2 H AS 04.7 H2 0	73 mrbua 8 593 CA CR F5	71 ACSAA 25 44 RB2 CR2 07
70 ACBCA 26 1574 NA2 H AS 04.7 H2 D	69 ACBCA 25 1534 CA10 (P 0416 (0 H)2	70 CJCHA 48 537 RB2 CR2 07
69 CHDCA 268 1694 BA N12 AS2 08	CA+2 VIII	71 ACSAA 25 35 RB2 CR2 07
70 AMMIA 55 2023 MN9 (0 H19 (H2 0)2	68 INOCA 7 1345 CA2 P2 07	71 JSSCB 3 364 AG2 CR 04
(AS 03) (AS 04)2	74 CJCHA 52 1155 CALB NG2 H2 (P 04)14	72 AG8CA 28 2845 K2 CR 04
70 ACSAA 26 1869 IN N472 H AS U4 70 ACSAA 24 3711 L1 M0 02 AS U4 70 INOCA 9 2259 CA2 AS U4 CI	71 JN8AA 75 27 CA C 03	73 ACSAA 27 177 284 (0 H)6 (CR 04)5.H2 0 73 ACSCA 29 2141 R82 CR4 013 73 ACSCA 29 2141 R82 CR4 013
65 ACCRA 18 777 CU3 AS 04 10 H13	CA+2 X	71 JCS1A 1971 1857 (NH4)2 CR 04
70 CJCHA 48 890 MG2 AS2 07	69 AC8CA 25 955 CA 82 04 111	73 MR8UA 8 271 K2 CR2 07
70 CJCHA 48 861 CO3 AS2 O8	CA+2 X11	CR+6 VI
71 CJCHA 49 1036 CA3 AS2 D8	69 ACBCA 25 965 CA B2 04 1V	74 AMMIA 59 1160 PB6 CR CL6 X6 Y2
TO AMMIA 55 1489 MNT SB AS 012	74 ANNIA 59 41 CA AL3 10 H16	CS+1 VIII
71 ACBCA 27 2124 NA3 AS 04.12 H2 0	(P 03 101/2 10 H11/2)12	69 SPHCA 13 930 CS2 BE F4
73 AUBLA 24 2011 RG3 832 00 61 AMM1A 46 1077 CA2 8 AS 04 10H14 73 (10H4 51 2082 MA 452 07	14 JACSA 46 6606 K2 CA CU (H U216 CO+2 IV 50 ACCPA 12 1049 CD IN2 D4	69 INDCA B 1665 CS4 MG3 F10
66 ZAACA 347 133 CA H AS 04 H2 0	71 ZAACA 382 270 K2 CD2 D3	CS+1 XI
66 ZAACA 347 140 SR H AS 04 H2 U	CD+2 V	69 INDCA 8 1665 CS4 HG3 F10
71 ANNIA 56 1147 2N4 AS2 OB 10H12.2H2 O	69 CJCHA 47 3409 CD2 P2 D7	CS+1 X11
70 AC8CA 26 403 CA H AS 04	70 2KKKA 132 332 CD3 AS2 D8	67 ACCRA 23 865 CS U F6
70 ZKKKA 132 332 CD3 AS2 08	CO+2 VI	68 ACSAA 22 2793 CS CO CL3
73 ACBCA 29 141 LU AS 04	69 CJCHA 47 3409 CD2 P2 D7	71 ACBCA 27 245 CS U6 F25
73 ALBLA 29 2721 MH4 H2 AS U4 AS45 VI 21 CICMA 49 2539 CI 52 AS 64	70 (AKKA 132 332 CD3 AS2 UB 66 SPHOA 11 11 CD ¥ 04 67 H(A4 50 2023 CD2 HM3 DB	69 2KKKA 129 259 CU LA D2 70 74164 179 113 68 613 02
73 JSSCB 6 80 MG8.5 AS3 016 70 CJCHA 48 3124 CD8 AS3 U16	74 JCSIA 1974 674 CD C4 H6 D6 74 ACBCA 30 1880 CD2 C4 H12 D12	
73 ACACD 29 266 CALCULATED	CD+2 V11	49 ACLRA 2 158 K2 CU CL3
74 INOCA 13 780 XE AS F11,XE2 AS F9	74 ACSAA 284 119 CD 01C H2 C 0 012.3 1/2 H2 0	CU+1 VI
74 ACBCA 30 250 K AS F6 AU+3 1950 AU+3 1950	CD 0(C H2 C 0 U)2.3 H2 0 74 JC\$14-1974 1922 CD C3 H5 05	70 MR8UA 5 207 CU TA 03 CU+2 IV
TO ZAACA 375 43 L13 AU 03,K AU 02,RB AU 02 70 JC14 1970 3092 K AU 140314	55 PRV6A 98 903 CD2 NB2 D7 59 ACRCA 25 1804 CD (N D312-4 D2 L)	57 ACURA 10 554 CU CR2 04 71 ACIEA 10 413 SR CU F4, CA CU F4 (1142 14 50
AU+5 VI	74 JCSIA 1974 674 CD C4 H6 D6	67 ZKKKA 124 91 ZN2 CU AS2 OB
74 INUCA 13 775 XE2 AU F17	CE+3 VIII	68 ACBCA 24 388 CU2 IN2 D5
G +3 111	74 ZAACA 403 1 R3 VS V (CE F3)	71 AGBCA 27 677 CU 82 04
68 NJMMA 1968 80 CA AL B D4	74 JCSIA 1974 1165 C41 H24 CE F12 N 08 S4	65 JCPSA 43 3959 CU (C6 H5(C H3)2 C3 0212
70 ACBCA 26 906 82 03 1	CE+3 14	66 INOCA 5 517 CU (C10 H9 D212
71 SPHCA 15 802 K BE2 8 03 F2	67 SPHCA 12 214 CE 8 51 05	67 JC514 1967 309 CU (D4 C12 H18)
70 ACBCA 26 1189 K B 02 71 ACBCA 26 1189 K B 02 71 ACHCA 27 904 113 8 03	CE+3 X 60 ANNIA 45 1 CE4 NE NE2 T12 S14 D22	70 46864 26 8 CU 0
7G 2KKKA 132 241 CA 83 G5 (GH)	CE+4 VI	69 ACSAA 23 221 CU3 W 06
71 Jacga 4 284 LU 8 UJ	72 ACBCA 28 956 BA CE 03	68 CJCHA 46 917 CU3 AS2 DB
74 JCPSA 60 1899 MN 84 07	73 JSSCB 8 331 R (CE4+)	68 JCPSA 48 2619 CU MO 04
74 MR8UA 9 1661 ND ALS (8 03)4	CE+4 VIII	CU+2 VI
6 +3 IV	69 [NUCA 8 33 [N H4]2 CE F6	63 NATUA 197 70 CU3 5 04 0 H
68 AC8CA 24 869 82 US 11	74 JCSIA 1974 2021 NA6 CE MID 036 H2.30H2 0	63 ACCRA 16 124 CU5 (P 04)2 (0 H)4
64 ACBCA 24 1703 RA B F4	74 JSICA 15 3V7 CE(S U4)2	68 JCPSA 48 2619 CU MO 04
69 Cjcha 47 2579 M B F4	74 ACSAA 28 1079 A- CE (ACAC)4	70 ACBCA 26 1020 CU N 04
11 Acbca 21 877 (M B2 74	[P+N XI]	58 Cucha 46 465 Cuch 82 07
71 ACBCA 27 1102 N H4 B F4	68 JACSA 90 3589 (NH4)2 H6 ICE N012 042)+12 H2 0	68 JACSA 90 5623 CULLIC H312 N12 -
20 2888A 132 241 CA B3 05 0 H	CF+3 V1	(PLD12 D113 LCL 0412
63 ACCRA 16 1233 NA 8 10 H14+2 H2 0	74 JINCA 36 2023 R3 VS V (CF2 (S 04)3)	70 INDCA 9 151 CU (ONPA)3 (CL 04)2
74 JCPSA 60 1899 NN 64 07	CL+5 111	73 ACBCA 29 1743 CU V2 06
78 ARM14 56 1553 NG (86 07 10 H)6) ,2 H2 0 73 ARM14 58 909 C4 8 51 U4 0 H 71 4/8/2 27 472 74 4/17	73 ARBUA 8 791 R8 CL 03 CL+7 LV 72 ACRCA 28 810 THD0 C+ 14	CU+3 VI 72 MRBUA 7 913 LA CU 03
	32 2KKKA 84 65 K CL 04 60 ACKRA 13 855 N U2 CL 04-M (1 04-	
64+2 VI	H CL D4.H2 OLL CL D4.3 H2 O	UNPU1 DY CL2+ DY BR2
70 2KKAA 131 161 843 V2 08	54 JPCHA 63 279 H CL D4.H2 O	07+2 VIII
73 ZENBA 285 263 84 406 04 84+2 481 1 400/4 27 100 44 471 00	58 JACSA 80 5075 C6 H6.AG CL 04 57 PISAA 56 136 N H4 CL 04	UNPUI DY CL2
73 ACULA 27 1203 08 PE2 U4 73 ACULA 29 2009 BA2 TI 04 BA+2 VIII	62 ACCRA 15 1201 N H4 CL 04 71 JCS14 1971 1371 CU (CI 04 N112 (CI 0432	oj #HSSA j R440 UT2 03 0Y+j VII 71 jCNLR L 83 DY/THD13.+270
58 ZRKKA 110 231 CU BA2 IC U O H30.4 H2 O	70 ACBCA 26 1928 N2 H5 CL 04	0Y+3 VIII
69 JCP54 51 4928 BA M4 F4	71 ACBCA 27 898 H CL 04.2 1/2 H2 0	74 ZAACA 403 1 R3 VS V (DY F3)
70 JCP54 53 3279 84 CU F4	73 1CHAA 7 477 (C N12-TRIEN-CU CL 04 71 ACBCA 27 898 M CL 04.2 1/2 H2 0	70 SSCOA 8 1745 DY3 FE5 312 DY+3 IX

.

Table 2 (cont.)

	1
74 ZAACA 403 1 R3 VS V (DY F3)	73 ACBCA 29 869 HG MO 04
ER+3 VI	H0+3 VIII
70 ACBCA 26 484 ER2 512 07	74 ACBCA 30 2049 K HD BE F6
ER+3 VII	70 SSC0A 8 1745 HD3 FE5 D12
70 SPHCA 15 36 EK2 GE2 U7 72 JCMLB 2 197 ER8 U (THD)10 (0 H)12 FR+1 V111	72 BUFCA 95 437 HD P5 014 74 ZAACA 403 1 R3 V5 V (HD F3)
68 CHPL8 2 47 ER P 04, ER V 04	74 ZAACA 403 1 R3 VS V (HU F3)
70 INDCA 9 2100 ER (C2 04) (H C2 04).3H2 0	74 ACBCA 30 2613 HD(C2 H5 5 04)3.9H2 0
70 SSC0A 8 1745 ER3 FE5 012	H0+3 X
71 ACSAA 25 372 EK (H U C H2 C O 013+2H2 O	74 INOCA 13 2535"H0(H2 D)4 (H C D3)3+2H2
74 ZAALA 403 I K3 VS V (EK F3)	75 CJCHA 53 831 (N 0)2(HO(N 03)5)
72 JCMLB 2 197 ER8 0 (THD)10 (0 H)12	1+5 111
ER+3 IX	71 (CPCA 54 2456 N H4 1 04
59 ZKKKA 112 362 ER (C2 H5 S 04)3.9H2 0	66 ACCRA 20 758 LI I 03
74 ZAACA 403 1 R3 VS V (ER F3)	66 ACCRA 21 841 LI I 03
EU+2 VI	58 ACCRA 9 1015 CE (1 0314
70 ZAACA 374 201 LI EU3 D4	58 ACCRA 11 794 CE (1 0314,HZ 0
TO ZAACA 374 201 LI EU3 04 69 ACBCA 25 1104 EU 12	43 RTCPB 62 729 N H4 [03 [+5 V] 7] (CDSA 54 2556 N H4 I 03
73 REF 3 LI2 EU5 08	1+7 IV
EU+2 VIII	70 ACBCA 26 1782 NA I 04
UNPUL EU F2, EU 8R2 EU+2 IX 73 RVCMA 10 72 EU CL2	26 ZEPYA 39 308 K 1 04 71 JCSIA 1971 1857 1(+7)-U
	66 ACCRA 20 765 H5 1 U6 65 ACCRA 19 629 K4 H2 12 D10.8H2 D
71 NATWA 58 218 EU2 SI U4	37 JACSA 59 2036 [N H4]2 H3 [06
EU+3 VI	[N+3 [V
68 REF 4 EU4 AL2 09 70 ZAACA 374 201 LI EU3 04 73 REF 3 L12 EU5 08	74 ZAACA 409 97 RB2 IN4 07 73 ZAACA 395 280 SR2 IN2 05
EU+3 VII	74 ZAACA 409 97 R82 IN4 07
68 REF 4 EU4 AL2 D9	61 ACSAA 15 1437 IN D H S D4.(H2 D)2
73 REF 3 L12 EU5 U8	68 ACBCA 24 388 CUZ IN2 05
EU+3 V111	70 ACSAA 24 1662 IN 0 D H
74 ZAACA 403 1 R3 VS V (EU F3) 73 ACSAA 27 2827 EU2 (C3 H2 C4)3.8H2 0	69 INUCA 8 1985 INZ 03 74 ACBCA 30 1882 NA IN SIZ 06 74 SPHDA 18 761 INZ 652 07
EU+3 IX	IR+4 VI
74 ZAACA 403 1 R3 VS V (EU F3)	71 JSSC8 3 174 SR IR 03
73 ACSAA 27 2827 EU2 (C3 H2 04)3.8H2 0	IR+5 VI
71 ACSAA 25 3347 EU TRISGLYCOLATE	74 MRBUA 9 1177 R3 VS V (CO2 IR2 O7)
74 AMMIA 59 1166 BA FE 514 010	68 ZAACA 358 241 K AG O
FE+2 IV HS	- REF 2 K2 D
69 SCIEA 166 1399 (NA,K)2 FE4 SI12 030.H2 D	K+1 VI
69 ZAACA 369 306 FE V2 04	51 ZAACA 264 144 K 58 F6
71 JUPSA 31 452 FEZ TI 04	68 SPHOA 12 1095 K Y MO2 08
72 JUPSA 33 1296 FEZ MO 04	69 CCJOA 11 606 K2 2R2 05
FE+2 V1 LS	69 ACRCA 25 1919 K 12 59
69 ACACA 25 925 R VS A (FE S2)	K+1 VII
FE+2 VI HS	68 CJCHA 46 935 KZ CR2 07
69 NJMMA 1969 430 FE AL2 (P 0412 (U H12 (O H216	69 JCSIA 1969 849 K2 MO 04
2H2 0	71 SSCOA 9 335 K FE F4
71 SPHCA 15 999 FE3 BE S13 09 (F,0 H)2 67 ACCRA 22 775 FE (HH4)2(S 04)2.6H2 0	K*1 VIII 30 ZKKKA 74 306 K H2 P 04 62 ZKKKA 117 411 K2 T16 013
68 CINYA 68 290 LI FE P 04	37 2KKKA 98 266 K H2 (H3 0) 85 010
74 ANNIA 59 486 FE2 SI 04	71 INUCA 7 873 K H C2 04
FE+2 VIII	68 CJCHA 46 935 K2 CR2 07
71 AMMIA 56 791 GARNETS	70 JCSIA 1970 3092 K AU (N D3)4
71 ZKKKA 114 333 FE3 A/2 513 012	66 ACCPA 10 639 K AU (N D3)4
73 ACACB 29 266 CALCULATED	K+1 IX
FE+3 IV HS	70 ZKKKA 132 27 K1.4 NA5.5 CAO.3 AL7.5
70 AC8CA 26 1469 CA2 FE2 05 70 SSC0A 8 1745 M3 FE5 012 71 AC8CA 27 134 84 FE5 012	69 ACBCA 25 600 K CE F4
71 MRBUA 6 725 BA CA FE4 08	K+1 X
71 ACSAA 25 3616 CA2 FE2 05	73 CJCHA 51 2613 K AL P2 07
73 ACBCA 29 832 8A FE2 04	K+1 XII
FE+3 V	58 SPHCA 13 420 K Y W2 08
71 JSSCB 4 1 FE V 04	71 INOCA TO 1284 K2 PB CU (N U2)6
FE+3 VI HS	67 INOCA 5 514 K2 BA CU (N U2)6
70 ACBCA 26 1469 CA2 FE2 05	74 JACSA 96 6606 K2 CA CU (N U2)6
70 SSC0A 8 1745 M3 FE5 012	75 ACBCA 31 596 K2 BA CU (N 0216
71 SSC0A 9 335 K FE F4	57 PISAA 56 143 K CL 04
71 JSSB 4 1 FE V 04	LA+3 VI
71 JPCSA 32 1315 BI FE 03	69 ZKKKA 129 259 CU LA OZ
71 ACSAA 25 3616 CA2 FE2 05	73 MRBUA 8 1269 R3 VS V (RE2 M3 012)
67 ACCRA 23 239 FE (C5 H7 0213	LA+3 VIII
69 CCJ0A 1969 440 FE (C7 H5 0213	74 AMMIA 59 1277 LA4 MG2 TI3 SI4 022
FE+3 VIII	73 ACBCA 29 2074 LA2 MO3 012
73 JSSC0 8 331 ESTIMATEO	68 INOCA 7 2295 LA (C5 H7 0213 (H2 012
FF+4 VI	74 7AACA 403 1 R1 VS V (LA F3)
73 JSSCB 8 331 R3 VS V (PEROVSKITES)	74 SPHCA 18 675 LAZ SR3 (8 03)4
R3 VS V (SR FE 03)	LA+3 IX
FE+6 IV	71 MRBUA 6 23 LA FE 03
73 JSSCB 8 43 K2 FE 04	74 ZAACA 403 l R3 VS V (LA F3)
R3 VS V (K2 FE 04)	74 ANNIA 59 1277 LA4 MG2 TI3 S14 022
GA+3 IV 71 ACBCA 27 616 L15 GA 04 75 ACBCA 31 640 50 643 513 00	LI+1 IV 39 ZKKKA 162 119 LI 0 H.H2 0
GA+3 VI	70 INOCA 9 1096 Y8 LI F4
74 ACBCA 30 1364 C15 H21 06 GA	71 AMMIA 56 18 NAJ ALZ LIJ F12
GD+3 VII	71 AC8CA 27 616 L15 GA 04
70 ACBCA 26 484 GD2 SI2 07	73 JSSCB 6 538 L13 V 04
72 ACBCA 28 40 GD2 M03 012	73 AC8CA 20 2425 L1 V02 451 BE 64
72 SPHCA 16 790 GO2 GE2 D7	73 ACBCA 29 2628 LI N H3 O H S O4
69 IVNMA 5 1823 GO9.33 S16 O26	64 ACCRA 17 783 L12 C2 O4
72 JSSC8 5 266 G09-33 516 026	74 ACBCA 30 2434 LI2 BE SI 04
GD+J VIII	LI+L VI
21 SPHCA 15 926 NA G0 51 04	44 ACBCA 34 225 LI3 AL EA
72 SPHCA 16 790 GD2 GE2 D7	69 ZAACA 371 306 L12 ZR 03
74 ZAACA 403 L RJ VS V (GD FJ)	70 ZKKKA 132 118 L12 AL2 S13 010
GD+3 1X	71 MRBUA 6 555 L12 MO F6
72 SPHCA 16 790 GO2 GE2 O7	65 ACCRA 19 561 L1 C6 U7 H7
74 ZAACA 403 1 R3 VS V (GD F3)	68 CINYA 68 290 LI FE P 04
GE+4 IV	71 ACSAA 25 3337 LI NB3 08
68 ZKKKA 126 299 CO GE 03 69 SCIEA 165 586 MN2 GE 04 69 Zkkka 129 427 MN3 FE2 GE3 D12	73 CJCHA 51 265 LI V 03 73 ACBCA 29 2294 L12 28 F6
70 JSSCB 2 612 NG28 GE10 048	TO ZAACA 377 TO CA LUZ D4
71 SPHCA 15 924 MA SM GE 04	71 JACCA 4 284 LU B 03
70 ACSAA 24 1287 NA4 5N2 GE4 012 10 H)4	LU+3 V[1]
67 ACSAA 21 1281 NA8 5N4 GE10 030 (0 H)4	74 ZAACA +GJ 1 R3 VS V (LU F3)
70 MDCH9 102 964 NA2 GE 03	10+3 1x
71 NOCHB 102 1245 K2 GE4 D9	74 ZAACA 403 1 R3 VS V (LU F3)
72 SPHCA 17 244 CD GE 03	MG+2 1V
72 MOCMB 103 1560 GES D (P 04)6	72 ACBCA 28 267 K2 MG5 S112 U30
GE+4 VI	>2 ACCRA 5 684 MG AL2 04
70 55004 1 557 CA2 GE D4	72 ACRCA 28 3583 MG2 NA2 S16 D15
70 JSSCB 2 612 MC28 GELO D48	74 ACBCA 30 2667 K6 MG U4
71 MDCM8 102 1245 K2 GE4 09	MG+2 V
71 ACBCA 27 2133 GE O2	68 ACSAA 22 1966 MG3 P2 U8
72 AMMIA 57 62 MN2 GE O4 DELTA	66 NJMMA 1966 142 MG 84 07
72 7888A 136 137 GE 10 M1 9 D4	UNPU3 MG3 27 DB
72 HOCHB 103 1560 GES 0 (P 0416	UNPU3 MG2 P2 07
H+1 1	MG+2 V1
57 JHOSA 1 43 T F	65 CJCHA 43 1139 MG2 P2 07
56 JCPSA 25 275 H F	63 BAPCA 11 361 MG2 AS2 07
HF+6 LV	70 ACBCA 26 1429 MG M 46 P 04
75 JSSCB 13 275 R3 VS V (N4 HF D4)	71 CJCHA 49 1630 MG3 V2 D8
HF+4 V[]	69 INDCA 8 1665 CS4 MG3 F10
10 JAU1A - 53 126 MF 02	69 28884 129 65 86 51 U3
64 Acsaa - 23 3541 MF (0 H)2 5 04.M2 0	69 59864 13 933 86 8 04
74 Acsaa - 27 3467 MF4 (0M)8 108 0414.M2 0	70 JSSCB 2 612 8628 6610 048
MF+4 VIII	65 NNLMB 1965 196 NG AL B U4
73 ACSAA 27 2455 HF (0 HIZ S 04	70 BSCFA 1970 4243 NG S D4.HZ D
71 CCJD4 1971 466 HG2 F2 HG+2 11	71 ALBCA 27 815 MG3 TE D6 68 ACSAA 22 1466 MG3 P2 08 70 REF 1 CA MG S1 D4

.

	1
	74 AGBCA 30 2491 MG2 V2 07
	71 AMMIA 56 1553 MG (86 07 10 M)61.2H2 U 73 Ammia 58 1029 Mg C 03
	74 CJCHA 52 1155 CA18 MG2 HZ (P 04)14 70 INDCA 9 151 MG (OMPA)3 (CL 04)2
	72 CJCHA 50 3619 NG V2 U6 71 ACRCA 29 2611 NG3 A52 08
	MG+2 VIII 71 ACACE 29 266 CALCULATED
: 0	MN+2 IV HS 70 ANNIA 53 1489 MN7 58 AS (112
	69 ZAACA 369 306 MN V2 04 71 ACRCA 27 1044 MN CO CE D4
	69 PHSSA J2 K91 MN CR2 04 73 ACAGE 24 266 CALCULATED
	MN+2 V HS AB ANNIA 53 1841 HN2 D H AS 04
	74 MPMTA 21 246 MNZ AS 04 DH
	UP ACBCA 25 925 R VS D ELECTRUNS
	69 SCIEA 165 586 MN2 GE U4 69 JCPSA 51 4928 BA MN F4
	TO ZKKKA 132 1 MH5 (0 H12 \$12 08 69 ANNIA 54 1312 MH FE2 (P 0412 (04)2.8H2 0
	TO NJMIA 113 1 MN7 NA12 (\$ 04)13-15H2 0
	72 AMMIA 57 621 MN2 GE 04 67 PRLAA 92 125 MN C 03
	67 HCACA 50-2023 MN5 08 MN+2 VII
	72 AMM1A 57 621 MN2 GE 04 MN+2 VIII
	69 ZKKKA 129 427 MN3 FE2 GE3 012 71 Ammia 56 791 Garnets
	73 SSCOA 12 109 MN3 AL2 GE3 012 74 JCPSA 6J 1899 MN 84 07
	MN+3 VI HS 67 ACSAA 21 2871 MN2 03
	67 2KKKA 124 428 MN2 D3 68 ACRCA 24 1233 MN D D H
	69 JCPSA 50 1066 (N H4)2 MN F5 63 PHSSA 3 K446 MN2 D3
	71 JSSCB 3 238 LA MA 03, MA 04,
	73 JSSCB 6 16 NA MN7 012
	14 ARAIA 59 985 RG2 RN 8 05 68 ACBCA 24 1114 NA4 MN4 TI5 018
	74 INDCA 13 1854 MM (C/ HS 0213-1/4 CO HS CHS 74 INDCA 13 1864 MN (ACAC)3
	75 JSSCB 13 275 R3 VS V (M4 MN 04)
	73 JSSCB 8 234 BA MN 03
	63 CZYPA 13 398 NAT H4 MN (1 0613.17H2 0 67 HCACA 50 2023 NNS D8. C02 NNS D8
	MN+6 IV 72 4(8(A 28 2845 K2 MN 04
	MN+7 1V 68 ACBCA 24 1053 AG MN U4
	MU+3 VI 69 ACBCA 25 400 KJ MO CL6
	69 INDCA 8 2694 K3 MO F6 MO+4 VI
	71 MRBUA 6 555 L12 MO F6 H0+5 IV
	74 INOCA 13 2715 R3 VS V (RE HO D4) HO+5 V1
	71 INOCA 10 922 BA2 ND ND 06 NO+6 IV
	68 SCH5A 48 2819 CO HO 04 68 SCH5A 12 1095 K Y HOZ 08
	72 ACBCA 28 60 GU2 M03 012
	71 SPHCA 15 611 L13 FE MO3 012 71 SPHCA 15 629 K 4 MO3 012
	71 JCPSA 55 1093 CA MO 04, SR MO 04 73 ACRCA 29 2074 LA2 MO3 012
	71 JČŠIA 1971 1857 HD(+6) -0 HD+6 V
	67 CCJDA 1967 374 K2 MO3 010 68 JCSIA 1968 1398 K2 MO3 010
	MO+6 VI 68 JCSIA 1968 1398 K2 MO3 010
	70 JSSCB 1 484 AG6 M010 033 70 INOCA 9 2228 NA3 (CR M0 06 024 H6)+8H2 0
	70 ACSAA 24 3711 LI MO DZ AS 04 66 ACSAA 20 2698 MO F6 (GAS)
1	70 CC30A 1470 50 H0 03 (H2 072 72 ACBCA 28 2222 H0 03.2H2 0
	73 ACBCA 29 869 HG MO 04 74 ACBCA 30 1795 HG 039H2 0
	N-3 IV REF 6 MG3 N2, SI3 N4, B N, TI N
	N+5 111 REF 6 NH4 N 03.NA N 03.K N 03.
	NA+1 IV
	REF 2 NA2 0
	68 ACBCA 24 1077 NA2 512 D5 AB SPHDA 12 987 NA2 2N2 512 D7
	64 ZAACA 329 110 NA2 HG 02 NA+1 VI
	70 ACSAA 24 1287 NA4 SN2 GE4 012 10 H)4 65 ACCRA 19 561 NA C6 07 H7
	63 ACCRA 14 1233 NA 8 (0H)+.2H2 0 60 ZKKKA 113 430 NA2 AL2 SI3 010.2H2 0
	58 ZKKKA 111 241 NA CL 03 56 ACCRA 9 811 (NA AS OSIX
	59 AGCRA 12 526 NA U ACETATE
	75 ACBCA 31 890 NA2 C 03.H2 0
	71 SPHCA 15 926 NA GO SI 04 70 NJN1A 113 1 HN7 NA12 (S 0613.15H2 0
	73 ACBCA 29 890 NA2 CR2 OT ALPHA NA+L VIII
	68 AC8CA 24 1703 NA B F4 68 Sphoa 12 987 Na2 ZN2 512 07
	71 AMMIA 56 18 NAB ALZ LIB F12 NA+1 X[1
	71 JSSC8 3 89 NAL3 NB35 094 32 ZKKKA 81 135 NA AL SI 04
	ND+3 VI 74 ACIEA 86 819 LI NB 02
	75 JACSA 97 2713 NB(DPM)4
	48 JCPSA 48 5048 8427 SR7.5 NB2 05.78 70 JSSC8 1 419 N -MR2 05
	70 JSSC8 1 454 NA2 N84 011 70 ARMIA 55 90 CA N82 D6
	55 PRVAA 98 903 CU2 NB2 D7 71 JSSCB 3 89 NA13 NB35 094
ļ	71 244C4 380 119 MN NB2 06 74 JINCA 36 1965 CA2 NB2 U7
	71 JUDIA 1971 1280 813 N817 047

,

Table 2 (cont.)

	1	1
70 ACBCA 26 105 843 514 N86 026	70 ACACB 26 501 PB2 03	58+3 IV
71 ACSAA 25 3347 LI NB3 OB 59 SPHCA 4 796 LY, YB3 NB O4	PB+2 VII 69 ZKKKA 128 213 PB CA2 513 09	70 ACSAA 24 320 58 P 04 58+5 VI
73 JSSCB 8 159 81 NB 04 66 ACSAA 20 72 NB P 05	64 ACCRA 17 1539 PB P2 06 PB+2 VIII	70 ANNIA 55 1489 MW7 SB AS 012 71 JCSIA 1471 942 AS SB F8
74 BUFCA 97 3 NA3 NB D4 N8+5 VII	71 SPHCA 15 928 PB W 04 64 ACCRA 17 1539 PB P2 06	71 JCSIA 1971 2318 BR2 583 F16 74 JCSSB 9 345 NA 58 D3
70 JSSCB 1 454 NA2 NB4 011 71 JSSCB 3 89 NA13 NB95 U94	73 CJCHA 51 70 PB2 V2 07 72 MRBUA 7 1025 BI 717ANA7ES	SC+3 VI 68 CJCHA 46 1446 SC2 DJ
71 ACBCA 27 1610 (NH4)3 N8 0 (C2 04)3+H2 0 75 ACBCA 31 673 NB2 05	P8+2 1X 67 ACCRA 22 744 PB F2	68 ARKEA 29 343 5C2 03
	73 CJCHA 51 70 PB2 V2 07 74 78884 139 215 PB C 03	73 SPHCA 17 749 SC2 S12 D7
ND+2 IX	74 CJCHA 52 2701 PB V2 06	73 ACBCA 29 2615 NA SC SI2 06
ND+3 VI	TO ZKKKA 132 228 P83 P2 08	74 INDCA 13 158 SC (C7 H5 02)3 73 ACSAA 27 2841 SC U H (C3 H2 04).2H2 0
71 INUCA 10 922 BA2 ND ND 06 74 MRBUA 9 1661 ND AL3 B4 012	57 ACCRA 10 103 P8 (N 0312	69 SPHDA 14 9 NA3 SC 512 D7 SC+3 VIII
69 JCPSA 50 86 NOZ MO3 012	R3 VS V (84 5 04) 70 ZKKKA 132 228 PB3 P2 06	74 INUCA 10 137 SC H (C7 H5 02)4 72 ACSAA 26 1337 SC2 (C2 04)3.6H2 0
71 JSSC8 3 458 ND V 04 - 70 SPHCA 14 518 K ND M2 08	71 INOCA 10 1264 K2 PB CU (N 02)6 PB+4 1V	74 INDCA 13 1886 H SC (C7 H5 0214 74 INDCA 13 1880 H SC (C7 H5 0214
TU ACBCA 26 484 ND2 T12 DT TO ACSAA 24 3406 ND4 RE2 D11	72 JCSIA 1972 2448 R3 VS V INA4 PB 04) PB+4 V	58+6 IV 68 ZAACA 358 125 MN SE 04, CO SE 04, NI SE 04
71 SPHDA 15 636 ND2 W 06 71 SPHCA 15 991 ND4 W3 015	70 ZAACA 375 255 RB2 PB 03 PB+4 VI	51 JCS1A 217 968 H2 SE D4 70 ACBCA 26 436 NA2 SE D4
74 MR8UA 9 129 NO P5 014 74 Zaaca 403 1 R3 VS V (ND F3)	70 ACACB 26 501 P82 03 65 JINCA 27 1509 P83 04	TO ACBCA 26 1451 K2 SE 04 TO ZAACA 374 206 NI 55 DA.AH2 II
74 ACBCA 30 468 ND P3 D9 ND+3 1X	74 CJCHA 52 2175 R3 VS V	72 AC8CA 28 2845 K2 5E U4
70 AC5AA 24 2969 NO2 (C2 D4)3.10.5H2 0 71 SPHCA 15 991 NO4 N3 D15	68 MRBUA 3 153 PB 02	71 JSC1A 1971 1857 SE(+61 -0
73 ACSAA 27 2441 ND2 (C3 H2 0413.8H2 0 74 ZAACA 403 1 B3 V5 V (NO 53)	67 INOCA 6 730 PO (C6 H5 CH3 CH(C D)2)2	63 NATWA 50 91 FE2 SI D4
73 ACSAA 27 2813 ND2 (C3 H2 04)3.6H2 0		61 ACCRA 14 835 MG3 AL2 \$13 012
74 AMMIA 59 1277 ND4 MG2 T13 S14 022	73 INDCA 12 1726 XE PD F11	70 ZKKKA 132 1 MNS (U H)2 SI2 OB 58 ACCRA 11 437 CA3 AL2 SI3 012 (GROSSULARI7E)
72 JSSC8 4 11 NO AL DS	61 JCS1A 1961 3728 K2 PD F6 PH+3 VI	71 AMMIA 56 193 CU2 CA2 SI3 010.2H2 0 71 SPHCA 15 926 NA GU SI 04
61 JAPIA 32 685 NI CR2 04	PN+3 VIII 74 ZAACA 403 I R3 VS V (PM F3)	71 SPHCA 15 806 Y2 SI 05 71 NATWA 58 218 EU2 SI 04
65 BSCFA 1965 1085 SPINELS NI+2 IV SQ	PM+3 1X 74 ZAACA 403 1 R3 VS V (PM F3)	70 PEP1A 3 161 CU2 SI D4 70 ACBCA 26 105 BA3 SI4 NB6 D26
66 INOCA 5 1200 NI (DPM)2 NI+2 V	PD+4 VI 74 CJCHA 52 2175 R3 VS V	71 ACBCA 27 747 CA2 SI 04.CA CL2 71 ACBCA 27 848 CA2 SI 04
67 BAPCA 15 47 NI2 P2 07 NI+2 VI	PO+4 V1[] R3 VS V (FLUOR[7E)	71 AMMIA 56 1222 NA.16 K.84 CA4 (518 0201F.8H2 0 71 AMMIA 56 1155 MG5.6 FF.4 513 012.MG F 0 M
74 AMMIA 59 486 NIZ SI 04 74 Acbca 30 1686 NI (PY N D16 (B F4)2	PR+3 V1 71 MRBUA 6 545 R3 VS V (PR2 MD3 D12)	69 MSAPA 2 31 LI M SI2 06, NA M SI2 06
68 ZAACA 358 125 NI SE 04 67 8APCA 15 47 NI2 P2 07	PR+3 VIII 20 SPHCA 15 28 PR2 W2 04	69 MSAPA 2 95 FE6.1 MN.1 MG.8 CA.1 SIB
70 ACBCA 26 1464 RB NI F3 70 ZAACA 378 129 SR2 NI TE 06	74 ZAACA 403 1 R3 VS V (PR F3)	69 MSAPA 2 101 L12.4 NA.1 MG12.9 S115.7
70 JSSCB 2 416 R8 NI F3 71 PHSSA 438 125 NI (0 H12	70 SPHCA 15 28 PR2 W2 09	70 2KKKA 132 288 GAS \$12 D7 (C 03)2
70 REF 1 NIZ SI D4 64 ACCRA 17 1481 NI (C5 H7 0212,2H2 D	74 ZAACA 403 1 R3 VS V (PR F3)	71 ACBCA 27 2269 NA2 SI 03.6H2 D 72 SPHCA 16 1021 BE2 SI 04
73 ACBCA 29 2741 NI SI F6.6H2 D	72 ACBCA 28 956 BA PR U3	72 ACBCA 28 1899 AL2 8E3 516 018 74 ACBCA 30 2434 L12 8E 51 04
74 JCPSA 61 852 NI C4 04.2H2 0	73 JSSCB 8 331 R (PR+4)	SI+4 VI 62 NATWA 49 345 SI D2
73 ACBCA 29 2304 NI3 VZ 08	74 CJCHA 52 2175 R3 VS V PT+2 IV SQ	69 CJCHA 47 3859 CU SI F6.4H2 D 7D AC8CA 26 233 SI P2 D7
74 ZAAGA 405 167 M2 M1 N1 F6	72 REF 5 PT3 CD 06 PT+4 VI	71 AC8CA 27 2133 S1 D2 71 AC8CA 27 594 CA3 S1 (0 H16.12H2 D.S04.CO3
NI+3 VI HS	69 JINCA 31 3803 PT 02 R3 VS V (M2 PT2 07)	73 ACBCA 29 2741 M S1 F6.6H2 0 73 ACBCA 29 2748 CU S1 F6.6H2 0
NI+4 VI LS	74 CJCHA 52 2175 R3 VS V P7+5 VI	74 CJCHA 52 2175 R3 VS V SM+2 V11
67 SIGBA 3 1 R3 VS V (FLUORIDES) 74 JINCA 36 1561 K2 NI F6	67 STBGA 3 1 R3 VS V (FLUORIDES) 67 JCSIA 1967 478 XE PT F11	UNPU1 SH 12 SH+2 VIII
NU+2 VI	PU+3 VI	
74 INDCA 13 2233 ESTIMATED	67 INUCA 3 327 R (PU+3)	SM+2 IX
(* INDCA L3 2233 ESTIMATEO NP+3 VI 68 JINCA 30 823 NP CL3	67 INUGA 3 327 R (PU+3) 75 JINGA 37 743 R (PU+3) PU+4 VI	SH-52 IX UNPUL SH CL2, SH BR2 SH-54 VI
74 INUCA IS 2233 ESTINATEO NP43 VI 66 JINCA : 30 823 NP CL3 NP+4 VI 67 INUCA 3 327 ESTINATED	67 INUCA 3 327 R (PU+3) 75 JINCA 37 743 R (PU+3) PU+4 YI 67 INUCA 3 327 R (PU+4) 73 JSSCB 8 331 R (PU+4)	SH=2 IX UNPU1 SH CL2, SH BR2 SH=3 VL SH=3 VL 71 SPHCA 15 924 NA SM GE D4 SH=3 VL1
/ κ ΙΝΟCA I3 2233 ΕΥΤΚΑΤΕΟ NP-3 VINCA 30 823 NP CL3 NP-4 VINCA 30 823 NP CL3 47 ΙΝυCA 3 327 ΕSTINATED 74 CJCHA 52 2175 R3 VS V NP-6 VI	of INUCA 3 527 R (PU-3) 15 JINCA 37 743 R (PU-3) PU-6 VI of INUCA 327 R (PU-4) of INUCA 327 R (PU-4) 7 A 5550 8 321 R (PU-4) 7 A 555 8 2175 R3 V5 V PU-6 VI	SH-2 (X WOL SH DRC, SH PC SH-2 (X WPU) SH CL2, SH BR2 SH-3 VI 71 SHCA 15 924 AN SH GE 04 SH-3 VII 70 SHCA 15 214 SH2 512 07
(A C MOCA C 2 223 C STINATEO NP-3 V ACA C 0 23 NP CL3 NP-4 V ACA C 0 23 NP CL3 AT NUCCA 3 227 C STINATED 74 CJCHA 52 2175 R3 V5 V NP+6 V I R3 V5 V (BA2 SR NP O6) OH−1 II R3 V5 V (BA2 SR NP O6)	67 INUCA 3 327 R (PU+3) 15 JINCA 37 763 R (PU+3) PU+4 VI 67 INUCA 3 327 R (PU+4) 73 JSCB 8 331 R (PU+4) 74 6 JCAN 52 2175 R 3 VS V PU+6 VI R8-I VI R8-I VI R8-I VI R3 VS V (BA2 SR PU 06)	SH 2 1X 'UL 23 GAC, 34 FC UNPUL 3H CL2, 5H BR2 SH 3VL 71 SPHCA 15 924 HA SH GE DA SH 3VL 70 SPHCA 15 214 SH2 512 G7 74 SPHCA 16 315 KR SH FS SH 3VLL HA SH AD 1 BU SC 97 GAL
A & [NOCA L3 223] SSTINATEO NP-3 VI 4 6 64 [NCA 30 B23 NP CL3 5 7 [NUCA 3 227 SSTINATED 7 6 (JCHA 52 2175 R3 V5 V NPF6 VI R3 V5 V (BA2 5R NP O6) OH-1 II 7 1 AMNIA 56 L355 NG6.6 FE4.5 SI3 O12 F O H, R100-11R8[F-1]+0.06	67 INUCA 3 327 R (PU+3) 15 JINCA 37 748 R (PU+3) PU+4 VI 67 INUCA 3 277 R (PU+4) 73 JSCB 8 331 R (PU+4) 74 GJCAA 52 2175 R 3 V 5 V PU+6 VI R8+1 VI 70 ZAACA 375 255 R82 PB 03 R8+1 VI	SH-2 1X 'UL 3A GAC, SH F2 SH-2 1X 'UL 3A GAC, SH GAC TI SHCA 15 924 NA SH GE 04 SH-5 VII TO SHCA 15 924 NA SH GE 04 TO SHCA 15 214 SH2 512 OT T4 SHCA 16 375 RZ SH F5 SH-3 VIII T4 JAACA 403 1 R3 US V (SH F3) T4 JAACA 30 JT51 SH P5 014 SH SH SH SH SH SH SH SH SH SH SH SH SH br>SH SH
No is vince 13 2233 ESTIMATED No a jinee. 30 823 ND CL3 ND a jinee. 30 823 ND CL3 ND a jinee. 30 823 ND CL3 ND a vi ND a vi	67 INUCA 3 327 R (PU+3) 15 JINCA 3 7 74 R (PU+3) PU+5 VINUCA 3 27 74 R (PU+4) 74 J35C8 8 331 R (PU+4) 74 CJCRA 52 2175 R 3 V5 V PU+5 VI R8-1 VI 70 LAACA 375 255 R82 PB 03 R8+1 X R0+1 X R0+1 X	SN=2 12 SN=3 16 24, 38 76 UMPUI SN=2 (C2, 58 862 10 JM=CA 11 JM=CA 12 JM=CA 13 JM=CA 14 JM=CA 15 924 NA SM GE DA 14 JM=CA 15 924 NA SM GE DA 16 JS ST SM F5 17 SM=CA 18 JS ST SM F5 19 JS M F5 314 A01 JT5 18 JS ST K5 90 ACLED 24 JS SM (JB R D3) 10 JS JS M F5
Nº 14 VINCLA 13 2233 ESTINATED ed Jinca 30 823 NP CL3 ed Jinca 30 823 NP CL3 ed Jinca 327 ESTINATED 74 CJCHA 52 2175 R3 VS V DV-1 11 71 AMMIA 56 1155 NGGO FEG. 513 012 F 0 H, CH-1 11 14 AMMIA 56 1155 NGGO FEG. 513 012 F 0 H, CH-1 1V R (CH-1)=R(F-1)+.04 CH-1 1V	67 INUCA 3 327 R (PU+3) 75 JINCA 3 7 74 R (PU+3) PU+4 VI 74 JINCA 3 27 74 R (PU+4) 74 JISCS 8 331 R (PU+4) 74 CJCHA 52 2175 R3 V5 V PU+6 VI R8-1 VI 74 ACBCA 375 255 R82 PB 03 R8-1 IX 74 ACBCA 30 1640 R82 5 04 R8-1 XI R8-1 XI R8-1 XI	SN+2 IX JA GAZ, SA FZ SN+2 IX JA GAZ, SA FZ SN+3 VI JA GAZ, SA FZ TI SPHCA 15 924 NA SM GE DA SN-10 SH-2 IX SN FZ TA SPHCA 15 924 NA SM GE DA SN-10 SH-2 IX SN FZ TA SPHCA 15 214 SN-2 SI 20 T TA SPHCA 15 15 SN FZ SN-3 IX JA IAACA SN JACA JA IAACA SN JACA JA IAACA SN JACA JA IAACA SN JACA JA JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nº IX INCLA 13 2233 ESTINATED Nº IXILA: 30 823 NP CL3 NPAS VICA: 30 823 NP CL3 NPAS VICA: 3275 R3 VS V NPAS VI NPAS VI A3 VS V (8A2 SR NP 06) OH-1 11 71 AMMIA: 56 L153 MGA FE-4 S13 012 F 0 H. R(OH-11ma(F-1)+.04 OH-1 11 71 AMMIA: 56 L153 MGA FE-4 S13 012 F 0 H. OH-1 11 71 AMMIA: 56 L153 MGA FE-4 S13 012 F 0 H. OH-1 1V R(OH-11ma(F-1)+.04 OH-1 VI R(OH-11ma(F-1)+.04	67 INUCA 3 327 R (PU+3) 15 JINCA 3 7 74 R (PU+3) PU+4 VI 3 J JSCA 8 327 R (PU+4) 3 J JSCA 8 331 R (PU+4) 7 CJCHA 52 2175 R3 V5 V PU+6 VI R8+1 VI R8+1 VI R8+1 VI R8+1 S 7 A ACBCA 305 255 R82 PB 03 R0+1 XI 7 A ACBCA 30 1640 R82 5 04 R8+1 XI 7 A ACBCA 30 1640 R82 5 04 R8+1 XI 7 A ACBCA 30 1640 R82 5 04 R8+1 15 7 A ACBCA 30 1640 R82 5 04 R8+1 15 7 A ACBCA 30 1640 R82 5 04 R8+1 15 7 A ACBCA 30 1640 R82 5 04 7 A ACBCA 30 1640 R8 7 7 A ACBCA 30 1640 R82 5 04 7 A ACBCA 30 1640 R8 16 7 A ACBCA 30 1640 R82 5 04 7 A ACBCA 30 1640 R82 5 04	SH-2 1X 'UN 23 GAZ, 3A FZ UNPUL 3A GAZ, 3A FZ TL SPICA 15 924 NA SM GE GA SM-3 VI TL SPICA 15 924 NA SM GE GA SM-3 VI T4 SPICA 18 575 R2 SM FS SM-3 VIII T4 AACA 403 I R3 V5 V (SM F3) T4 AGGA 30 1751 SM F5 014 T4 AGGA 25 A21 SM F5 014 T4 SPICA 13 200 NH SM 15 00-124-NH 0 T6 AGGA 403 I R3 V5 V (SM F3) T6 AGGA 403 I R3 V5 V (SM F3) T7 AAGGA 403 I R3 V5 V (SM F3)
No. 4 12 223 SITIATED NP.4 VICA 30 23 N E CL3 S. 1002 31 27 ESTIATED NP.4 VICA 3 237 ESTIATED NP.4 VICA 3 237 ESTIATED NP.4 VICA 3 237 ESTIATED NP.4 VICA 3 237 ESTIATED NP.4 VICA 3 237 ESTIATED NP.4 VICA 3 237 ESTIATED OH-1 IV R 30 V V 1842 SR NP 06) OH-1 III 13 ANNIA TI ANNIA 56 1155 MGA.5 FE.4 SI3 012 F 0 H. OH-1 III R (OH-11REF-11+.04 OH-1 V R (OH-11REF-11+.04 OH-1 VI R (OH-11REF-11+.04	67 INUCA 3 3778 R (PU+3) 15 JINCA 3778 R (PU+3) PU+4 VI 74 JINCA 32778 R (PU+4) 74 JINCA 52 2175 R3 VS V PU-6 VI R8+1 VI R8+1 VI R0 L4ACA 375 255 R82 PB 03 74 ACSCA 30 L640 R82 S 04 R6+1 XI 74 ACSCA 30 L640 R82 S 04 R8+1 XII 70 ACSCA 20 L464 R8 NI F3 70 JISCE 2 582 RNI F3 R8+1 XI 70 JISCE 2 582 RNI F3 70 JISCE 7 70 JISCE	SH-2 12 TUL 3A GAZ, SH FZ UMPUL 3H CL2, SH GZ SH-3 VI TI SHCA 15 924 HA SH GE GA SH-3 VI TA SHCA 15 924 HA SH GE GA SH-3 VI TA LACA 403 I R YS Y (SH F3) TA LACA 403 I R YS Y (SH F3)
No. 14, VINCLA 13 2233 ESTINATED 04 310CLA 130 233 NP CL3 NP44 VI 05 110CLA 13 227 STINATED NP46 VI 14 APRILA 53 237 STINATED 0H-1 11 14 APRILA 56 1155 MG6.0 FE4.4 513 012 F 0 H, RIGH-11-RIF-11+.04 0H-1 11 71 APRIL 56 1155 MG6.0 FE4.4 513 012 F 0 H, RIGH-11-RIF-11+.04 0H-1 VI RIGH-11-RIF-11+.04 0H-1 VI 0544 VI 70 ACMA 17 459 05 02 70 ACMA 24 123 05 02	67 INUCA 3 327 R (PU+3) 115 JINCA 37 743 R (PU+3) PU-5 JINCA 37 743 R (PU+3) 73 J35C8 8 331 R (PU+4) 74 CJCRA 52 2175 R3 V5 V PU-6 V1 R3 V5 V (R42 5R PU 06) R8-1 V1 R3 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5	SH-2 12 TOL 3- D GAZ, 3 H F2 UHPUI SH CL2, 5 H B2 SH 3 VI TO SHICA 15 924 NA SM GE D4 SH 3 VI TO SHICA 15 924 NA SM GE D4 SH 3 VI TO SHICA 15 978 X SM F5 SH 3 VI TA SACCA 18 975 X SM F5 SH 3 VI TA SACCA 30 1751 SH 75 014 SH 312 SH 32 SACA 30 1751 SH 75 014 SH 32 SACA 30 1751 SH 75 TA SACCA 403 1 R 3 VS V (SH F3) TA SACCA 403 1 R 3 VS V (SH F3) TA SACCA 403 1 R 3 VS V (SH F3) SH 72 SACCA 403 1 R 41 SM 64 SH 72 SACCA 31 511 NS SM 04 TA SACCA 137 511 NS SM 04 TA SACCA 137 511 NS SM 04 TA SACCA 31 511 NS SM 04 TA SACCA 137 500 TA SACCA
No. 14, VINCLA 13, 2233 ESTINATED No. 233, VILCA 30, 223, NP CL3 NPA-4 VI 40 INLCA 30, 223, NP CL3 NPA-4 VI 14, 224, 224, 223, 225, 224, 225, 224, 225, 224, 225, 225	67 INUCA 3 327 R (PU+3) 15 JINCA 37 743 R (PU+3) 15 JINCA 3 727 R (PU+4) 73 J35C 8 331 R (PU+4) 74 CJCRA 52 2175 R3 V5 V PU+6 VI 74 CJCRA 52 2175 R3 V5 V PU+6 VI 75 CJCRA 52 2175 R3 V5 V 10 CJCRA 52 2175 R3 V5 V 10 CJCRA 52 2175 R3 V5 V 10 CJCRA 52 2175 R3 V5 V 10 CJCRA 52 2175 R3 V5 V 10 CJCRA 52 2175 R3 V5 V 10 CJCRA 52 2175 R3 V5 V 10 CJCRA 52 2175 R3 V5 V 10 CJCRA 52 2175 R5 V5 V 10 CJCRA 52 CJC	SN+2 12 SN SN SN SN SN SN+3 VI SN SN SN SN SN TL SPICA 15 924 AN SN GE DA SN SN TL SPICA 15 924 AN SN GE DA SN SN SN TL OSMICA 15 924 AN SN GE DA SN SN SN TO SPICA 15 924 AN SN GE DA SN
N I K VINCLA 13 2233 ESTINATED SA JINCA 30 823 NP CL3 NPAS VINCA 32 2175 K3 VS V NPAS VI RACJONA 52 2175 K3 VS V NPAS VI RACJONA 52 2175 K3 VS V (842 5K NP 06) OH-1 II R3 VS V (842 5K NP 06) OH-1 II R3 VS V (842 5K NP 06) OH-1 IV R10H-11R1(F-1)+.04 OH-1 VI R10H-11R1(F-1)+.0	67 INUCA 3 327 R (PU-3) 75 INUCA 3 7 74 R (PU-3) 75 INUCA 3 7 74 R (PU-4) 74 J3CS 8 331 R (PU-4) 74 CJCHA 52 2175 R3 V5 V PU-6 VI 74 CJCHA 52 2175 R3 V5 V PU-6 VI 74 CJCHA 52 2175 R3 V5 V 74 CJCHA 52 2164 R8 NI F3 70 CJSCA 20 1640 R82 5 04 R8-1 XI 70 CJSCA 20 1640 R82 104 84 J10 CJ 85 CJCHA 19 205 R8 U 02 (N 03)2 R6-4 VI 64 INCA 7 108 LA R66 019 85 J2CHA 22 300 N04 R82 011	SH+2 1X SH GAZ, SH FZ SH+2 1X SH GAZ, SH FZ SH+2 1X SH GAZ, SH FZ SH SH CA 15 924 MA SH GE DA SH SH CA 15 924 MA SH GE DA SH SH SH CA 15 924 MA SH GE DA SH SH SH SH SH SH SH SH SH SH SH SH SH S
No. 4 12 223 SITIATED NP4. VIC. 30 23.0 KCL3 0.6 310C. 30 23.0 KCL3 NP4. VIC. 3 237 ESTIATED OH-1 NUC. OH-1 155 MGA	6 7 INUCA 3 327 R (PU+3) 9 INUCA 3 7 743 R (PU+3) 9 INUCA 3 7 743 R (PU+3) 7 J 15CG 8 331 R (PU+4) 7 J 15CG 8 331 R (PU+4) 7 A C3CFA 52 2175 R3 V5 V R8+1 V1 R3 V5 V (R82 5R PU 06) R8+1 V1 R3 V5 V (R82 5R PU 06) R8+1 V1 AACA 375 255 R82 PB 03 R8+1 V1 7 A C3CFA 10 1640 R82 5 04 R8+1 X11 7 0 AGCA 20 1640 R82 5 04 R8+1 X1 7 0 45CG 20 1640 R82 5 04 R8+1 X1 7 0 45CG 20 1640 R82 5 04 R8+1 X1 8 5 4CCFA 10 205 R8 U 02 (N 03)2 R8+1 V1 6 5 4CCFA 52 2175 R3 V5 V 7 0 AGA2 24 80 A0 R25 01 9 8 400 C 25 R5 U 02 (N 03)2 R8+5 V1 7 0 AGA2 24 80 A0 R0 R 25 01 9 8 400 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A	SH+2 12 YOU 30 GAZ, 31 FZ SH+2 12 YOU 30 GAZ, 31 FZ SH=3 YI TI SHCA 15 924 HA SH GE GA SH=3 YI TI SHCA 15 924 HA SH GE GA SH=3 YI TA SHCA 18 517 HZ SH FS SH=3 YIII TA CACA 403 I R3 YS Y (SH F3) TA 4 Y TA CACA 403 I R3 YS Y (SH F3) SH=4 Y TA CACA 403 I R3 YS Y (SH F3) SH=5 Y TA CACA 403 I R3 YS Y (SH F3) SH=5 Y TO ANHA 55 307 SH T42 07 TO ANHA 55 307 SH T42 SH T42
No. K. VINCLA 13 2233 ESTINATED 0.0 23.0 CL3 0.0 23.0 CL3 0.0 10.2 3 27 STINATED 0.1 10.2 3 27 STINATED 0.1 1.0 3 27 STINATED 0.1 1.0 3 27 STINATED 0.1 1.0 52 STINATED 0.1 1.0 52 STINATED 0.1 1.0 52 STINATED 0.1 1.0 STINATED 1.0 0.1 1.1 STINATED 1.0 0.1 STINATED	6 7 INUCA 3 327 R (PU+3) 5 INUCA 3 7 743 R (PU+3) 71 NUCA 3 7 743 R (PU+3) 73 J35C 8 331 R (PU+4) 74 CJCRA 52 2175 R3 V5 V PU+6 V1 R3 V5 V (R42 5R PU 06) R8+1 V1 R3 V5 V (R42 5R PU 06) 70 IAACA 375 255 R82 PB 03 R8+7 ACBCA 10 1640 R82 5 04 R8+1 X1 74 ACBCA 10 1640 R82 5 04 R8+1 X1 74 ACBCA 20 1640 R82 5 04 R8+1 X1 74 ACBCA 20 1640 R82 5 04 R8+1 X1 74 ACBCA 20 1640 R82 5 04 R8+1 X1 74 ACBCA 20 1640 R82 5 04 R8+1 X1 74 ACBCA 20 1640 R82 5 04 R8+1 X1 74 ACBCA 20 1640 R82 5 04 R8+1 X1 74 ACBCA 20 1640 R82 5 04 R8+1 X1 75 J35C 4 24 3406 N06 R82 011 74 ACBCA 7 108 L4 R86 019 84 V1 75 J35C 13 77 N62 XM R8 06	SN=2 12 SN SN SN SN SN UNPUI SN GL2, SN SN SN SN=3 VI SN SN SN SN SN SN=3 VI SN SN SN SN SN SN SN=3 VI SN SN <td< td=""></td<>
N. F. VINCLA 13 2233 ESTIMATED 0. 43 JINCLA 30 823 NP CL3 NP4. VI 0. 1 NUCLA 3 227 STIMATED 1. 1 ANNLA 3 227 STIMATED 1. 1 ANNLA 35 2175 A3 V5 V 0-1 11 1. 1 ANNLA 50 1155 MG.6. FE.4 513 D12 F D H, NICH-116 50 1155 MG.6. FE.4 513 D12 F D H, NICH-117 A 100-11AN(F-1)+.04 0-1 11 0-1 11 R(D-1)+R(F-1)+.04 0-1 1V R(D-1)+R(F-1)+R(F-1)+.04 0-1 1V R(D-1)+R(F-1)+R(F-1)+.04 0-1 1V R(D-1)+R(F-1)+R(F-1)+.04 0-1 1V R(D-1)+R(F-1)+R(F-1)+R(F-1)+R(F-1)+R(F-1)	67 INUCA 3 327 R (PU+3) 15 JINCA 37 743 R (PU+3) 15 JINCA 37 743 R (PU+3) 74 J35CB 8 331 R (PU+4) 74 CJCRA 52 2175 R3 V5 V PU+5 V1 R3 V5 V (BA2 5R PU 06) R8+1 V1 R3 V5 V (BA2 5R PU 06) R8+1 R1 76 CJCA 375 255 R82 PB 03 R8+1 R1 76 ACBCA 30 1640 R82 5 04 R8+1 R1 76 ACBCA 32 2175 R8 NI F3 70 J35CB 2 582 R8 NI F3 70 J35CB 2 582 R8 NI F3 70 J35CB 2 582 R8 NI F3 70 J35CB 2 582 R8 NI F3 70 J35CB 10 205 R8 U 02 (N 03)2 R8+ NIV 86 INCCA 7 108 LA* R80 019 74 CCSA 22 2175 R3 V5 V R8+0 V1 75 J35CB 10 77 BA2 WN RE 00 74 V VIEROVENTES1 74 V5 VIEROVENTES1 74 V5 VIEROVENTES1 74 V5 VIEROVENTES1	SN-2 12 SN 30 24, 13 72 UMPUI SN 62, 13 72 SN 37 VI II II JIACA II JIACA II JIACA II JIACA III JIACA III JIACA III SIN 62, 15 92 JIA JIACA JIA SIN 72 JIA JIACA JIA JIACA JIACA JIA
No. 14, VINCLA 13, 2233 ESTINATED No. 14, VINCLA 13, 2233 ESTINATED No. 14, VINCLA 13, 227 ESTINATED T. 4, CJCHA 25, 2175 K3 V5 V No. 4, VINCLA 13, 227 ESTINATED T. 4, ANNIA 55, L135 KGLA FELA, 513 D12 F D H, DH-1 II T. 4, ANNIA 56, L135 KGLA FELA, 513 D12 F D H, DH-1 IV DH-1 IV DH-1 IV DH-1 IK CH-1 VI DH-1 IK CH-1 VI CH-1 VI CH-1 VI RICH-1 NAT(F-1)+.04 DH-1 VI RICH-1 NAT(F-1)+.04 RICH-1 NAT(F-1)+.04 R	6 7 INUCA 3 3 27 R (PU+3) 75 JINUCA 3 7 74 R (PU+3) 75 JINUCA 3 7 74 R (PU+3) 74 JISCS 8 331 R (PU+4) 74 CJCRA 52 2175 R3 V5 V PU+6 VI 76 CJCRA 52 2175 R3 V5 V PU+6 VI 70 CJCRA 52 2175 R3 V5 V 17 CJCRA 52 2175 R3 V5 V 17 CJCRA 52 2175 R3 V5 V 17 CJCRA 52 2175 R3 V5 V 17 CJCRA 52 2175 R3 V5 V 17 CJCRA 52 2175 R3 V5 V 17 CJCRA 52 2175 R3 V5 V 17 CJCRA 52 R5 R5 CJC (DC) R52 CJC 17 CJCRA 52 R5 CJC (DC) R52 CJC 17 CJCRA 52 R5 CJC (DC) R52 CJC 17 CJCRA 52 R5 CJC (DC) R52 CJC 17 CJCRA 52 R5 CJCC (DC) R52 CJC 17 CJCRA 52 R5 CJCC (DC) R52 CJC 17 CJCRA 52 R5 CJC (DC) R52 CJC 17 CJCCA 52 CJCCA 52 CJCCA 52 CJCCA 52 CJCCA 52 CJCA	SN=2 1X SN GAZ, SN FZ UNPUI SN GAZ, SN FZ SN SY LI SN GAZ, SN FZ TL SDFCA 15 924 AM SN GE DA SN SUL SN GAZ, SN FZ SN SUL 10 SN GAZ, SN FZ SN SUL 15 924 AM SN GE DA SN SUL 15 924 AM SN GE DA SN SUL 15 924 AM SN GE DA SN SUL 18 95 SY SUL A GAZ, SN SUL 18 SN SY SUL SN SUL A GAZ, SD SOLA 30 TST SN PS DLA DA A GAZ, SD SOLA 30 TST SN PS DLA DA A GAZ, SD SOLA 30 TST SN PS DLA DA A GAZ, AD SD SN SUL SN SY SUL DA A GAZ, AD SD SN SN SUL AN SN SOLA DA SN SY SIGE 11 SN SN SY SN SN SN SN SN SN SOLA DA SN SY SUL SD SOLA SN SY SN SN SN SN SN SN SN SN SN SN SN SN SN
No. 4 13 2233 ESTIMATED NP4.4 10 2337 ESTIMATED ST 140.4 327 ESTIMATED ST 140.4 327 ESTIMATED ST 140.4 3227 ESTIMATED ST 140.4 3227 ESTIMATED DH-1 11 ST MEA.5 ESTIMATED OH-1 11 ST MEA.5 ESTIMATED OH-1 11 ST MEA.5 ESTIMATED OH-1 111 TAMMIA ST ST ST OH-1 111 TAMMIA ST ST ST ST OH-1 IT AMMIA ST	67 INUCA 3 327 R (PU+3) 75 INUCA 3 74 R (PU+3) 75 INUCA 3 74 R (PU+3) 74 JOSCA 8 337 R (PU+4) 74 JOSCA 8 331 R (PU+4) 74 CJCHA 52 2175 R3 V5 V PU+6 VI 74 CJCHA 52 2175 R3 V5 V 74 RBC1 VI 74 RBC2 PD 03 R8+1 IX 74 RBCA 30 1640 RB2 5 04 R8+1 XI 70 ACBCA 20 1640 RB2 5 04 R8+1 XI 70 ACBCA 20 1640 RB2 5 04 R8+1 XI 70 ACBCA 20 1640 RB2 5 04 R8+1 XI 70 ACBCA 20 1640 RB2 5 04 R8+1 XI 70 ACBCA 20 1640 RB2 5 04 R8+1 XI 70 ACBCA 20 1640 RB2 104 70 ACBCA 20 7 70 ACBCA 20 7 70 ACBCA 24 97 A RE 05 74 ACCA 24 97 A RE C5 75 JSSCB 13 77 BB2 MN RE 06 75 JSSCB 13 77 BB2 MN RE 05 75 JSSCB 13 77 BB2 MN RE 05 74 JJOSIA 1057 RE(+7) -0 74 JJOSIA 1057 RE(+7) -0 74 JJOSIA 1057 RE(+7) -0 70 JOSICHA 48 Z19 (RE2 (M-C4 HT 0212) (RE 04)2	SH-2 12 TON 3 BAC, 3 F 72 SH-2 12 TON 3 BAC, 3 F 72 SH-2 12 TON 3 SH CL2, SH BAC TI SH-CA 15 924 MA SH CE DA SH DI SH-CA 15 924 MA SH CE DA SH DI SH-CA 15 924 MA SH CE DA SH DI SH-CA 15 975 AL SH DI SH-CA 15 975 AL SH DI SH CA SH CA 15 975 AL SH DI SH DI SH CA 15 975 AL SH DI SH CA 15 97
No. K. VINCLA 13 2233 ESTINATED 04 JINCLA 13 227 STINATED 05 JINCLA 13 227 STINATED 04 JINCLA 13 227 STINATED 05 INUCLA 13 227 STINATED 04 JINCLA 13 135 STALES 05 JINCLA 13 35 STALES 05 JINCLA 2 79 K 05 F6 74 SCOLA 27 9 K 05 F6 75 SCOLA 14 357 A VS V (IC20 052 07) 05 JINCLA 2 79 K 05 F6 74 SCOLA 29 195 05 04 74 ACOLA 29 195 05 04 74 ACOLA 29 195 05 04 74 ACOLA 29 195 05 04	o 7 INUCA 3 327 R (Pu+3) PUTS JINCA 3 327 R (Pu+4) 7 JINCA 3 327 R (Pu+4) 7 JINCA 3 227 R (Pu+4) 7 JINCA 3 227 R (Pu+4) 7 JINCA 3 227 R (Pu+4) 7 CJCHA 52 2175 R3 VS V PU040 70 LACA 375 255 R82 PB 03 R8 PU 06) R8+1 XI R3 S5 R82 PB 03 R8+7 R0 LACA 375 255 R82 PB 03 R8+7 R0 JACCA 375 255 R82 PB 03 R8+7 R0 JACCA 375 255 R82 PB 03 R8+7 R0 JACCA JO 1040 R82 S 04 R8+7 R0 JSCG 2 94 R8 N1 F3 JO JSCG 3 254 R8 N1 F3 T0 JSSCG 2 92 R8 N1 F3 JO JSCG 2 10 R2 M1 R8 012 R1 R1 S VS V (PRC 013 2 118 R2 VI R82 011 JO K544 R1 R2 S JSC N1 R8 C 01 <	SH-2 12 'UN 24 GAZ, 5H F2 UNPUL SH CL2, 5H BAZ SH 3 VL 15 SH 24 CL2, 5H BAZ SH 3 VL 16 SH 24 CL2, 5H BAZ 17 SH 24 CL2, 5H BAZ 17 SH 24 CL2, 5H BAZ 17 SH 24 CL2, 5H BAZ 17 SH 24 CL2, 5H BAZ 17 SH 24 CL2, 5H 25 18 SH 24 CL2, 5H 25 19 SH 24 CL2, 5H 24 19 SH 24 SH 24 19 S
No. 4 13 2233 ESTIMATED AB JINCA 30 223 NP CLS NPA+VI AB JINCA 327 ESTIMATED NPA+VI AB JINCA 52 217 S AS VS V NPA+VI AB JINCA 52 217 S AS VS V NPA+VI AB JINCA 52 217 S AS VS V NPA+VI AB JINCA 52 217 S AS VS V NPA+VI DH-1 II NON-INAIF-IN-00 NON-INAIF-IN-00 DH-1 II NICOH-INAIF-IN-00 NON-INAIF-IN-00 DH-1 V RICOH-INAIF-IN-00 NON-INAIF-IN-00 DH-1 V RICOH-INAIF-IN-00 NON-INAIF-IN-00 DH-1 V RICOH-INAIF-IN-00 NON-INAIF-INAIF-IN-00 DH-1 V RICOH-INAIF-INAIF-IN-00 NON-INAIF-INAI	o7 INUCA 3 327 R [P(u+3)] 15 JINCA 3 327 R [P(u+3)] 15 JINCA 3 327 R [P(u+4)] 74 JSCS 8 31 R [P(u+4)] 74 JSCS 8 31 R [P(u+4)] 74 JSCS 8 2175 R Y V PU-5 VI R Y S V (BA2 SR PU 06) R8+1 N R R [P(u+5)] 70 LACA 375 255 R82 PD 05 70 LACA 375 255 R82 PD 05 R 70 LACA 375 255 R82 CA R R 71 LACA 375 255 R82 CA R R 70 LACA 8 1640 R82 5 A 70 LACA 2 205	SN=2 12 SN JA SN JA UNPUI SN GL2, SN B2 JA JA II JACA 15 924 NA SN GE DA JA II JACA 15 924 NA SN GE DA JA II JACA 15 924 NA SN GE DA JA II JACA 15 924 NA SN GE DA JA II JACA 15 924 NA SN GE DA JA JA JASA 16 JS ST SN F5 JA JA JA JA JA JA AGL2 S SA JS JS JS JS JS JS JA JA AGL2 S SA JS JS JS JS JS JS JS JS JS JS JS JS JS
No. 1 12233 ESTIMATED A. JINCA 30 2233 NPACIA A. JINCA 30 223 NPACIA A. JINCA 30 230 NPACIA A. JINCA 30 230 NPACIA A. JINCA 300 NPACIA NPACIA A. JINCA 300 NPACIA NPACIA A. JINCA 1300 NPACIA NPACIA A. JINCA 240 230 NPACIA A. JINCA 240 </td <td>6 7 INUCA 3 3 227 R (PU+3) 75 JINUCA 3 7 74 R (PU+3) 75 JINUCA 3 7 743 R (PU+3) 74 JISCS 8 331 R (PU+4) 74 CJCRA 52 2175 R3 V5 V PU+6 V1 R3 V5 V (BA2 5R PU 06) R6-1 V1 R3 V5 V (BA2 5R PU 06) R6-1 X1 70 LGCCA 30 L640 R82 5 04 R6-1 X1 74 LGCCA 30 L640 R82 5 04 R6-1 X1 75 LGCCA 30 L640 R82 5 04 R6-1 X1 76 LGCCA 30 L640 R82 5 04 R6-1 X1 76 LGCCA 30 L640 R82 5 04 R6-1 X1 76 LGCCA 30 L640 R82 5 04 R6-1 X1 76 LGCCA 30 L640 R82 5 04 R6-1 X1 77 LGCCA 20 1640 R82 5 04 R6-1 X1 88 LGCCA 7 L64 R8 N1 F3 70 LGCCA 2 505 R8 U 02 (N 03)2 R6-6 V1 70 LGCCA 52 2175 R3 V5 V R6-5 V1 70 LGCCA 52 2175 R3 V5 V R6-5 V1 70 LGCCA 52 L175 R3 V5 V R6-5 V1 70 LGCCA 7 L06 L44 R6 019 70 LGCA 52 L175 R3 V5 V R6-5 V1 70 LGCA 52 L175 R3 V5 V R6-5 V1 70 LGCCA 7 L06 L44 R6 019 70 LGCA 52 L175 R3 V5 V R6-5 V1 70 LGCCA 7 L06 L44 R6 019 70 LGCA 24 R74 R6 CL5 R6-7 V1 88 ACGCA 10 205 R8 U 02 (N 02)2 R6-6 V1 70 LGCCA 7 L07 R22 V1 (R6 04)2 70 CGCA 40 L172 V1 88 ACGCA 20 L876 R2 03 R1-50 V1 10 LGCA 7 205 R62 07 (N2 012) R6-9 V1 88 ACGCA 20 L876 R2 03 R1-50 V1 10 L22 L640 R4 F5 10 L376 L22 L640 R4 F5 10 L22 L640 R4 F5 10 L22 L640 R4 F5</td> <td>SH-2 12 YOU IS A GAL A SH F2 UNPUIS SH GC L2, SH B2 TI SHCA 15 924 MA SH GC DA TI SHCA 15 924 MA SH GC DA TI SHCA 15 924 MA SH GC DA TA SHCA 15 9124 MA SH GC DA TA SHCA 15 9124 MA SH GC DA TA SHCA 15 914 MA SH F3 TA SHCA 15 915 SH F5 SH JY TI 4 GAL 30 TSI SH F5 014 SH JY TA SHCA 30 TSI SH F5 014 SH JY TA SHCA 30 TSI SH F5 014 SH JY TA SHCA 403 1 HB Y5 Y (SH F3) TA SH TI SH SH CA SH SH br/>SH br/>SH SH br/>SH SH br/>SH SH br/>SH SH br/>SH SH td>	6 7 INUCA 3 3 227 R (PU+3) 75 JINUCA 3 7 74 R (PU+3) 75 JINUCA 3 7 743 R (PU+3) 74 JISCS 8 331 R (PU+4) 74 CJCRA 52 2175 R3 V5 V PU+6 V1 R3 V5 V (BA2 5R PU 06) R6-1 V1 R3 V5 V (BA2 5R PU 06) R6-1 X1 70 LGCCA 30 L640 R82 5 04 R6-1 X1 74 LGCCA 30 L640 R82 5 04 R6-1 X1 75 LGCCA 30 L640 R82 5 04 R6-1 X1 76 LGCCA 30 L640 R82 5 04 R6-1 X1 76 LGCCA 30 L640 R82 5 04 R6-1 X1 76 LGCCA 30 L640 R82 5 04 R6-1 X1 76 LGCCA 30 L640 R82 5 04 R6-1 X1 77 LGCCA 20 1640 R82 5 04 R6-1 X1 88 LGCCA 7 L64 R8 N1 F3 70 LGCCA 2 505 R8 U 02 (N 03)2 R6-6 V1 70 LGCCA 52 2175 R3 V5 V R6-5 V1 70 LGCCA 52 2175 R3 V5 V R6-5 V1 70 LGCCA 52 L175 R3 V5 V R6-5 V1 70 LGCCA 7 L06 L44 R6 019 70 LGCA 52 L175 R3 V5 V R6-5 V1 70 LGCA 52 L175 R3 V5 V R6-5 V1 70 LGCCA 7 L06 L44 R6 019 70 LGCA 52 L175 R3 V5 V R6-5 V1 70 LGCCA 7 L06 L44 R6 019 70 LGCA 24 R74 R6 CL5 R6-7 V1 88 ACGCA 10 205 R8 U 02 (N 02)2 R6-6 V1 70 LGCCA 7 L07 R22 V1 (R6 04)2 70 CGCA 40 L172 V1 88 ACGCA 20 L876 R2 03 R1-50 V1 10 LGCA 7 205 R62 07 (N2 012) R6-9 V1 88 ACGCA 20 L876 R2 03 R1-50 V1 10 L22 L640 R4 F5 10 L376 L22 L640 R4 F5 10 L22 L640 R4 F5 10 L22 L640 R4 F5	SH-2 12 YOU IS A GAL A SH F2 UNPUIS SH GC L2, SH B2 TI SHCA 15 924 MA SH GC DA TI SHCA 15 924 MA SH GC DA TI SHCA 15 924 MA SH GC DA TA SHCA 15 9124 MA SH GC DA TA SHCA 15 9124 MA SH GC DA TA SHCA 15 914 MA SH F3 TA SHCA 15 915 SH F5 SH JY TI 4 GAL 30 TSI SH F5 014 SH JY TA SHCA 30 TSI SH F5 014 SH JY TA SHCA 30 TSI SH F5 014 SH JY TA SHCA 403 1 HB Y5 Y (SH F3) TA SH TI SH SH CA SH SH br>SH br>SH SH br>SH SH br>SH SH br>SH SH br>SH SH
No. 4 13 2233 ESTIMATED 0 30 23.4 257 ESTIMATED 0 30 23.4 257 ESTIMATED 0 31 23.7 ESTIMATED 37.1 0 31.0 23.2 257 ESTIMATED 0 14.0 23.2 257 ESTIMATED 0 14.0 23.2 257 ESTIMATED 0 14.0 23.2 27 ESTIMATED 0 14.0 23.2 27 ESTIMATED 0 14.0 14.0 23.2 27 ESTIMATED 0 14.0 14.0 24.2 25.0 P P 0 11 14.0 11.0 P	6 7 INUCA 3 327 R (PU+3) 9 INUCA 3 7 743 R (PU+3) 9 INUCA 3 7 743 R (PU+3) 7 J35C6 8 331 R (PU+4) 7 J35C6 8 331 R (PU+4) 7 A C3CCA 32 2175 R3 VS V R8+1 VI R8+1 VI 7 A C3CCA 32 2175 R3 VS V R8+1 VI 8 TO JACCA 375 255 R82 PB 03 8 TO JACCA 32 216 R8 NI F3 7 TO JACCA 22 416 R8 NI F3 8 TO J35C6 2 50 F8 U 02 (N 03)2 8 TO J35C6 2 40 F8 R 019 8 TO J35C6 2 40 F8 R 019 8 TO J35C6 2 40 F8 R 45 C57 R +5 VI 7 TO ACAA2 24 3006 M08 R2 011 7 J ACAA2 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 24 1876 R1-71 -0712 8 ACAA 24 24 182 M-8 R1 85 8 ACAA 25 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAA 24 1876 R1-71 -0712 8 ACAAA	SH+2 (12) SH GAZ, 53 FZ SH3 VI SH GAZ, 53 FZ TL SHCA 15 924 AM SM GE DA SH SHCA 15 924 AM SM GE DA SH SHCA 15 924 AM SM GE DA SH SHCA 15 924 AM SM GE DA SH SHCA 15 924 AM SM GE DA SH SHCA 15 914 AM SM GE DA SH SHCA 15 9175 SM FS SH SHCA 15 171 SM FS DLA SH SHCA 10 1715 SM FS DLA SH SHCA 10 1715 SM FS DLA SH SHCA 10 1715 SM FS DLA SH SHCA 10 1715 SM FS DLA SH SHCA 10 1715 SM FS DLA SH SHCA 12 18 SHC DA SH SHCA 13 18 SHC DA SH SHCA 13 18 SHC DA SH SHCA 14 38 SHC DA SH SHCA 14 38 SHC DA SH SHCA 14 38 SHC DA SH SHCA 14 38 SHC DA SH SHCA 14 38 SHC DA SH SHCA 15 SHCA SH SHCA 15 SHCA SH SHCA 14 SHCA SH SHCA 14 SHCA
No. 2 2233 ESTIMATED NP4. JOCA JO 223. N CL3 AS JINCA JO 223. N CL3 NP4. VICA JO 221. S AS VS V NP4. VICA JO 221. S AS VS V NP4. VICA JO 221. S AS VS V NP4. VICA S JO 221. S AS VS V NP4. VICA S JO 221. S AS VS V NP4. VI AS VS V (BA2 SR NP 06) OH-1 II RIOH-INATE-IN-10.0 TI AMPIA S 1135 MCA.6. F Z + S JO 12 F 0 H, RIOH-INATE-IN-0.0 OH-1 II RIOH-INATE-IN-0.0 OH-1 VI RIOH-INATE-IN-0.0 OS-4 VI RIOH-INATE-IN-0.0 OS-4 VI RIOH-INATE-IN-0.0 OS-5 VI RS VS V (D2 OS2 OT) OS-6 VI RS VS V (D2 OS2 OT) OS-7 VI RS VS V (PEROVSKITES) OS-7 VI RS VS V (PEROVSKITES) OS-8 VI RS VS OT VI RS VS OT VI RS VS OT OS-8 VI RS VS OT SS-8 VI RS OS OF	6 7 INUCA 3 327 R (Pu+3) PU-5 JINCA 3 327 R (Pu+4) 7 JINCA 3 327 R (Pu+4) 7 JINCA 3 227 R (Pu+4) 7 JINCA 3 227 R (Pu+4) 7 JINCA 3 227 R 3 VS V Pute VI R VS V (RA2 SR PU 06) R8+1 VI R3 VS V (RA2 SR PU 06) R0 / JACA 375 255 R82 P 0 03 R0 / JACCA 375 255 R82 P 0 03 R0 / JACCA 10 400 R82 S 04 R0 / JACCA 20 1040 R82 S 04 R0 / JACCA 20 1040 R82 S 04 R0 / JACCA 20 1040 R82 S 04 R0 / JACCA 20 1040 R82 S 04 R0 / JACCA 20 1040 R82 S 04 R0 / JACCA 10 1040 R82 S 04 R0 / JACCA 10 050 R2 00 R8 R1 / JACCA 10 050 R8 U 02 (N 03)2 R1 / JACCA 10 20 R82 O1 R1 / JACCA 20 AN R8 00 R82 O1 R1 / JACAA 210 R82 MR R8 00 R1 / JACAA 210 R82 R1 R80 O12	Sine 2 12 000 20 00 00 00 00 00 00 00 00 00 00 0
No. K. 100 C. 13 2233 STIATED No. K. 100 C. 23 NP C.L3 No. K. 11 NP N. 11 NP	o7 INUCA 3 327 R (P)(-3) 15 JINUCA 3 327 R (P)(-3) 15 JINUCA 3 327 R (P)(-3) 15 JINUCA 3 327 R (P)(-4) 74 JSCS 83 317 R (P)(-4) 74 JSCS 83 2175 R S V (BA2 SR PUIO OI 70 LACA 375 255 R82 PD OB R8 F R F R F R F R F R F R F R F R<	SN-2 12 TON UNPUT SN GC2, SN F2 TO SN-CL2, SN F2 TO SN-CL2, SN F2 TO SN-CL 15 924 NA SN GE D4 TO SN-CL 15 924 NA SN GE D4 TO SN-CL 15 924 SN F5 TA SNC 18 575 SX F5 SN SV F1 TA SNC 18 575 SX F5 SN SV F1 TA SNC 18 575 SX F5 SN SV F1 TA SNC 4 30 1751 SN F5 OLA SN S1 L A GCA 25 SA SN F5 TA SNC 4 30 1751 SN F5 SN SV SV SV SV SV SV F5 TA SNC 4 30 1751 SN F5 SN SV SV SV SV SV SV F5 SN SV SV SV SV SV SV SV SV SV SV SV TA SNC 4 31 SN SV SV SV SV SV SV SV TA SNC 4 31 SN SV SV SV SV SV SV SV TA SNC 4 31 SN SV SV SV SV SV SV SV SV SV SV SN SV SV SV SV SV SV SV SV SV SV SV SV SV
N. F. VINCLA 13 2233 ESTINATED 40 JINCLA 130 223 NP CL3 NP4+ VI 40 JINCLA 130 223 NP CL3 NP4+ VI 40 JINCLA 13 227 ESTINATED 14 ANNI CL3 1327 ESTINATED 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 17 LANNI S5 LI35 NGL6 FE.4 SI3 DI2 F 0 H, 18 SIGLA 24 JI30 S0 D2 05+* VI R (DH-1=N(F-1)+.04 05+* VI R10+1=N(F-1)+.04 18 JISCLA 12 JIN S5 V (CD2 052 07) 35 JINCL 2 79 K 05 F6 13 SIGLA 20 JIS 05 DA 13 SIGLA 20 JIS 05 DA 15 SIGLA 20 JIS 05 DA 15 SIGLA 20 JIS 05 DA 15 SIGLA 20 JIS 05 DA 16 SIGLA 20 JIS 05 DA 17 LACCA 22 RIAS CD 22 DT 18 SIGLA 20 JIS 05 DA 18 SIGLA 20 JIS 05 DA 19 SIGLA 20 JIS 05 DA 10 SIGLA 20 JIS 05 DA 10 SIGLA 20 JIS 05 DA 10 SIGLA 20 JIS 05 DA 10 SIGLA 20 JIS 05	6 7 INUCA 3 327 R (PU+3) 75 INUCA 3 7 74 R (PU+3) 75 INUCA 3 7 748 R (PU+3) 74 J356 8 331 R (PU+4) 74 CJCMA 52 2175 R3 V5 V PU+5 VI 70 LACA 375 255 R82 PB 03 R8+1 XI 74 CJCMA 52 2175 R3 V5 V R0+1 XI 75 LACA 375 255 R82 PB 03 R8+1 XI 74 ACBCA 30 L640 R82 5 04 R8+1 XI 75 ACBCA 30 L640 R82 5 04 R8+1 XI 74 ACBCA 30 L640 R82 5 04 R8+1 XI 75 ACBCA 30 L640 R82 5 04 R8+1 XI 76 ACBCA 32 L640 R82 5 04 R8+1 XI 76 ACBCA 32 L640 R82 16 77 J3CCCA 19 205 R8 U 02 (N 03)2 R6+1 XI 76 ACBCA 24 84 NH F3 70 J3CCA 24 840 N04 R22 01 76 CJCMA 52 2175 R3 V5 V R8+5 VI 76 J3CCCA 19 205 R8 U 02 (N 03)2 88 ACBCA 24 874 RE 019 74 J3CCCA 24 874 RE 019 75 J3SCG 13 77 842 VM RE 05 75 J3SCG 13 77 842 VM RE 05 76 CJCMA 48 219 (R82 (M-C4 H7 02)2) (RE 04)2 R8+7 VI 70 CJCMA 24 J406 RH2 03 R8+7 VI 70 CJCMA 48 219 (R82 (M-C4 H7 02)2) (RE 04)2 R8+7 VI 70 CJCMA 48 219 (R82 (M-C4 H7 02)2) (RE 04)2 R8+7 VI 70 ACBCA 26 L876 RH2 03 R1+5 VI 18 VV (LA RU 03) R1+5 VI 18 VV (LA RU 03) R1+5 VI 18 VV (LA RU 03) R1+5 VI 70 ACBCA 32 L175 RJ V5 V R0+5 VI 71 J3CCCA 32 L175 RJ V5 V R0+5 VI 70 ACBCA 32 L175 RJ V5 V R0+5 VI 71 J3CCCA 32 L175 RJ V5 V R0+5 VI 71 J3CCA 32 L175 RJ V5 V R0+5 VI 71 J2CC14 32 L175 RJ V5 V R0+5 VI R0+5 VI R0	SN=2 12 SN SN SN SN SN UNPUI SN GL2, SN BE2 SN SN SN SN II SN SN SN SN SN SN II SN SN SN SN SN SN SN II SN
No. K. VINCLA 13 2233 ESTIMATED 04 JICLA 30 23 NO 04 JICLA 30 237 ESTIMATED 04 JICLA 30 237 ESTIMATED 04 JILA 30 237 ESTIMATED 07 JILAMAIA 50 1155 MGA.b FE.4 513 D12 0 H. 04 III TI AMAIA 50 1155 MGA.b FE.4 513 D12 0 H. 04 III RIDO-INATE-INT-IN-04 MO MO </td <td>6 7 INUCA 3 327 R (PU+3) 9 INUCA 3 7 743 R (PU+3) 9 INUCA 3 7 743 R (PU+3) 7 J35C6 8 331 R (PU+4) 7 J35C6 8 331 R (PU+4) 7 A C3CCA 32 2175 R3 VS V R8+1 VI R8+1 VI 7 A C3CCA 32 2175 R3 VS V R8+1 VI 7 A C3CCA 32 2175 R3 VS V 8 T A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 8 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 32 2175 R5 VS VI 8 A C3CCA 32 2175 R5 VS VI 8 A C3CCA 32 2175 R5 VS VI 7 A C4CA 32 2175 R5 VS VI 7 A C4CA 22 2175 R5 VS VI 8 A C3CCA 42 24 3006 MC R2 611 7 J AC4A 22 24 3006 MC R2 611 7 J AC4A 22 24 3006 MC R2 611 7 J AC4A 22 24 3006 MC R2 611 7 J AC4A 22 24 3006 MC R2 611 7 J AC4A 22 24 3006 MC R2 611 7 J AC4A 22 2175 R5 VS VI 8 VS VIERVENTIESI 8 VS</td> <td>SH-2 12 TON UNPUI SH GLZ, SH FZ SH-3 VI TI SHCA 15 924 AM SM GE DA SH SHCA 15 924 AM SM GE DA SH SHCA 15 924 AM SM GE DA SH SHCA 15 924 AM SM GE DA SH SHCA 15 975 AM ST TA SHCA 15 975 AM ST SH SHCA 15 975 AM ST</td>	6 7 INUCA 3 327 R (PU+3) 9 INUCA 3 7 743 R (PU+3) 9 INUCA 3 7 743 R (PU+3) 7 J35C6 8 331 R (PU+4) 7 J35C6 8 331 R (PU+4) 7 A C3CCA 32 2175 R3 VS V R8+1 VI R8+1 VI 7 A C3CCA 32 2175 R3 VS V R8+1 VI 7 A C3CCA 32 2175 R3 VS V 8 T A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 30 1640 R32 5 04 R8+1 XI 8 A C3CCA 30 1640 R32 5 04 R8+1 XI 7 A C3CCA 32 2175 R5 VS VI 8 A C3CCA 32 2175 R5 VS VI 8 A C3CCA 32 2175 R5 VS VI 7 A C4CA 32 2175 R5 VS VI 7 A C4CA 22 2175 R5 VS VI 8 A C3CCA 42 24 3006 MC R2 611 7 J AC4A 22 24 3006 MC R2 611 7 J AC4A 22 24 3006 MC R2 611 7 J AC4A 22 24 3006 MC R2 611 7 J AC4A 22 24 3006 MC R2 611 7 J AC4A 22 24 3006 MC R2 611 7 J AC4A 22 2175 R5 VS VI 8 VS VIERVENTIESI 8 VS	SH-2 12 TON UNPUI SH GLZ, SH FZ SH-3 VI TI SHCA 15 924 AM SM GE DA SH SHCA 15 924 AM SM GE DA SH SHCA 15 924 AM SM GE DA SH SHCA 15 924 AM SM GE DA SH SHCA 15 975 AM ST TA SHCA 15 975 AM ST SH SHCA 15 975 AM ST
No. 1 13 2233 ESTIMATED Adjinca 13 227 ESTIMATED DH-1 11 Adjination Adjination OH-1 IL ROM-11mat(F-1)*.04 OH-1 N(DH-11mat(F-1)*.04 MOH-11mat(F-1)*.04 OH	6 7 INUCA 3 327 R (Pu+3) PUT5 JINUCA 3 327 R (Pu+4) 7 JINUCA 3 22175 R3 VS V Pute VI R3 VS V (RA2 SR PU 06) R8+1 VI R3 VS V (RA2 SR PU 06) R0 / JACCA 375 255 R82 VB 03 R0 / JACCA 376 248 R8 NI F3 10 JSSCE 2 50 R8 U 02 (N 03)2 R5 VICCA 52 248 R5 R5 VI 6 VICCA 52 257 R82 VI (N 02) 8 VI VICCA 52 257 R82 VI (N 03)2 R5 VICCA 52 246 R5 R1 F3 70 ACSAA 24 3406 M06 R2 01 71 ACSCAA 24 3406 M06 R2 01 8 VICCA 52 357 R82 VI (PROVSKITES) 8 VICCEA 7 205 R62 07 (N 22)2 8 ACEGA 7 205 R62	SH-2 12 YON 24 GAZ, 5H F2 UNUPU 35 GC2, 5H BC2 SH 30 YI TO SHICA 15 924 HA SM GE D4 SH 30 YI TO SHICA 15 924 HA SM GE D4 SH 30 YI TO SHICA 15 924 HA SM GE D4 SH 30 YI TO SHICA 15 978 K2 SIZ 07 TA SHICA 10 775 SH 75 014 SH 31 X SH 31 X
No. 1 132233 ESTIMATED Ad JINCA 30233 PCLS Ad JINCA 3023 PCLS Ad JINCA 3027 ESTIMATED AT INICA 3027 ESTIMATED AT INICA 3027 ESTIMATED AT INICA 3027 ESTIMATED DH-1 I ANIA TI ANNIA S6 LIDS MCALAFELA OH-1 II RIDH-11+RIF-11+.04 OH-1 N RIOH-1+RIF-11+.04 OH-1 NI RIOH-1-NIF OH-1 NI RIOH-1-NIF OH-1 NI RIOH<1-NIF	of INUCA 3 327 R (Pu+3) 15 JINCA 3 127 R (Pu+3) 15 JINCA 3 127 R (Pu+4) 7 JINCA 3 227 R (Pu+4) 7 L CJCHA 52 2175 R3 VS V PUID VI R3 VS V (RA2 SR PU 06) R8+1 VI R3 VS V (RA2 SR PU 06) R8+1 VI R3 VS V (RA2 SR PU 06) R8+1 KI 1640 R82 S 04 R8+1 KI 20 1640 R82 S 04 R8+1 KI 20 1640 R82 S 04 R8+1 KI 10 205 R8 U 02 (N 03)2 R8+1 KI 19 205 R8 U 02 (N 03)2 R8+1 KI 19 205 R8 U 02 (N 03)2 R8+1 KI 19 205 R8 U 02 (N 03)2 R8+1 KI 19 205 R82 07 (N 03)2 R8+1 KI 19 205 R82 01 0 JICCA 1 20 LA R86 01* 0 JICCA 2 10 LA R86 01* 0 JICCA 2 10 R82 WN R8 00 R8+1 KI 3 V V (PRRVSKITES) R4+1 JVI R4 SV VIERCE 70 JICCA 2 18 R2 RV-R 00 </td <td>SH-2 12 YOU 24 GAL A 15 924 MA SM GE DA UNPUL 35 GL2, 5 M B22 11 JUHCA 15 924 MA SM GE DA 11 JUHCA 15 924 MA SM GE DA 11 JUHCA 15 924 MA SM GE DA 12 JUHCA 15 924 MA SM GE DA 13 JUHCA 15 924 MA SM GE DA 14 GLCA 15 924 MA SM GE DA 14 GLCA 15 95 42 SM F5 15 M SUIT 14 GLCA 15 91 ST SM F5 15 M SUIT 14 GLCA 15 91 ST SM F5 15 M SUIT 14 GLCA 15 24 MA SM GE DA 15 M SUIT 15 M SUIT 15 M SUIT 15 M SUIT 16 GLCA 15 24 SUIT 17 M GLCA 15 24 M SM SUIT 17 M GLCA 15 24 M SM SUIT 17 M GLCA 15 11 KA SM GA 17 GLCA 16 12 SA 18 M SUIT 18 M SUI</td>	SH-2 12 YOU 24 GAL A 15 924 MA SM GE DA UNPUL 35 GL2, 5 M B22 11 JUHCA 15 924 MA SM GE DA 11 JUHCA 15 924 MA SM GE DA 11 JUHCA 15 924 MA SM GE DA 12 JUHCA 15 924 MA SM GE DA 13 JUHCA 15 924 MA SM GE DA 14 GLCA 15 924 MA SM GE DA 14 GLCA 15 95 42 SM F5 15 M SUIT 14 GLCA 15 91 ST SM F5 15 M SUIT 14 GLCA 15 91 ST SM F5 15 M SUIT 14 GLCA 15 24 MA SM GE DA 15 M SUIT 15 M SUIT 15 M SUIT 15 M SUIT 16 GLCA 15 24 SUIT 17 M GLCA 15 24 M SM SUIT 17 M GLCA 15 24 M SM SUIT 17 M GLCA 15 11 KA SM GA 17 GLCA 16 12 SA 18 M SUIT 18 M SUI
No. 1 1.22.23 ESTIMATED A. JURCA 3.22.23 ESTIMATED A. JURCA 3.22 ESTIMATED A. JURCA S.22 ESTIMATED A. JURCA S.12 ESTIMATED A. JURCA S.12 <t< td=""><td>6 7 INUCA 3 3 27 R (PU+3) 75 INUCA 3 7 74 R (PU+3) 75 INUCA 3 7 74 R (PU+4) 74 CJCAA 52 2175 R3 V5 V PU+5 VI 74 CJCAA 52 2175 R3 V5 V 74 CJCAA 52 2175 R3 V5 V 70 LACA 375 255 R82 PB D3 R8+1 XI 74 CJCAA 1375 255 R82 PB D3 R8+1 XI 75 ACGCA 10 L640 R82 5 D4 R8+1 XI 76 ACGCA 10 L640 R82 5 D4 R8+1 XI 76 ACGCA 10 L640 R82 5 D4 R8+1 XI 76 ACGCA 10 L640 R82 5 D4 R8+1 XI 76 ACGCA 10 L640 R82 5 D4 R8+1 XI 76 ACGCA 7 L08 LA4 R80 D19 76 ACGCA 7 L08 LA4 R80 D19 77 JSCCA 10 Z2 R74 R8 V5 V R8+0 VI 75 JSCC 10 72 87 87 V 76 ACGCA 24 874 RE CD5 80 ACGCA 24 874 RE CD5 77 JSCC 77 295 R2 D7 L0 R22 07 90 ACGCA 7 295 R2 D7 L0 R22 07 70 CJCAA 24 974 RE CD5 77 JSCC 77 295 R2 D7 L0 R22 07 70 CJCAA 24 874 RE CD5 77 JSCC 77 295 R2 D7 L0 R22 17 70 CJCAA 24 874 RE CD5 77 JSCC 77 295 R2 D7 L0 R22 17 70 CJCAA 24 17 295 R2 D7 L0 R22 17 70 CJCAA 24 17 295 R2 D7 L0 R22 17 70 CJCAA 24 17 295 R2 D7 L0 R22 17 71 CJCAA 25 L175 R4 20 7 72 JSCC 77 295 R2 D7 L0 R22 17 73 JSCC 77 295 R2 D7 L0 R22 17 74 CJCAA 25 L175 R42 D3 R4+7 VI 74 CJCAA 72 17 295 R2 D7 L0 R22 17 74 CJCAA 24 J17 X 87 V V LA RU D3 RU-5 VI 74 CJCAA 24 J17 X 87 V V LA RU D3 RU-5 VI 74 L2CAA 12 J177 RU D4 75 ACGCA 74 3317 K RU D4 RU-5 VI 74 JSCAA 21 777 RU D4 54 JSCAA 24 J377 RU D4 54 JSCAA 24 J377 RU D4 54 JSCAA 24 J377 RU D4 55 V JSCAA 24 J377 RU D4 55 VI SACGCA 24 S95 CU S 0-3 N2 U</td><td>SH-2 12 COL UNPUT SHOLE 24 SH 2512 OT TO SHICA 15 924 MA SM GE DA TO SHICA 15 975 AL SH 30 VIII TA 626C 15 975 SH 55 SH 30 VIII TA 626C 25 621 SK (SH 0313,0H2 0 TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 29 286 GACGUATED SH 4V 100 TO AMA 55 367 SH 74 207 TA 626C 420 1207 ANA 5M2 GE 012 10 M12 TA 626C 120 286 GACGUATED SH 4V 101 TA 626C 420 290 SH (N 03)4 TA 4V 101 SH 4V</td></t<>	6 7 INUCA 3 3 27 R (PU+3) 75 INUCA 3 7 74 R (PU+3) 75 INUCA 3 7 74 R (PU+4) 74 CJCAA 52 2175 R3 V5 V PU+5 VI 74 CJCAA 52 2175 R3 V5 V 74 CJCAA 52 2175 R3 V5 V 70 LACA 375 255 R82 PB D3 R8+1 XI 74 CJCAA 1375 255 R82 PB D3 R8+1 XI 75 ACGCA 10 L640 R82 5 D4 R8+1 XI 76 ACGCA 10 L640 R82 5 D4 R8+1 XI 76 ACGCA 10 L640 R82 5 D4 R8+1 XI 76 ACGCA 10 L640 R82 5 D4 R8+1 XI 76 ACGCA 10 L640 R82 5 D4 R8+1 XI 76 ACGCA 7 L08 LA4 R80 D19 76 ACGCA 7 L08 LA4 R80 D19 77 JSCCA 10 Z2 R74 R8 V5 V R8+0 VI 75 JSCC 10 72 87 87 V 76 ACGCA 24 874 RE CD5 80 ACGCA 24 874 RE CD5 77 JSCC 77 295 R2 D7 L0 R22 07 90 ACGCA 7 295 R2 D7 L0 R22 07 70 CJCAA 24 974 RE CD5 77 JSCC 77 295 R2 D7 L0 R22 07 70 CJCAA 24 874 RE CD5 77 JSCC 77 295 R2 D7 L0 R22 17 70 CJCAA 24 874 RE CD5 77 JSCC 77 295 R2 D7 L0 R22 17 70 CJCAA 24 17 295 R2 D7 L0 R22 17 70 CJCAA 24 17 295 R2 D7 L0 R22 17 70 CJCAA 24 17 295 R2 D7 L0 R22 17 71 CJCAA 25 L175 R4 20 7 72 JSCC 77 295 R2 D7 L0 R22 17 73 JSCC 77 295 R2 D7 L0 R22 17 74 CJCAA 25 L175 R42 D3 R4+7 VI 74 CJCAA 72 17 295 R2 D7 L0 R22 17 74 CJCAA 24 J17 X 87 V V LA RU D3 RU-5 VI 74 CJCAA 24 J17 X 87 V V LA RU D3 RU-5 VI 74 L2CAA 12 J177 RU D4 75 ACGCA 74 3317 K RU D4 RU-5 VI 74 JSCAA 21 777 RU D4 54 JSCAA 24 J377 RU D4 54 JSCAA 24 J377 RU D4 54 JSCAA 24 J377 RU D4 55 V JSCAA 24 J377 RU D4 55 VI SACGCA 24 S95 CU S 0-3 N2 U	SH-2 12 COL UNPUT SHOLE 24 SH 2512 OT TO SHICA 15 924 MA SM GE DA TO SHICA 15 975 AL SH 30 VIII TA 626C 15 975 SH 55 SH 30 VIII TA 626C 25 621 SK (SH 0313,0H2 0 TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 403 1 A 19 VS V (SH F3) TA 626C 29 286 GACGUATED SH 4V 100 TO AMA 55 367 SH 74 207 TA 626C 420 1207 ANA 5M2 GE 012 10 M12 TA 626C 120 286 GACGUATED SH 4V 101 TA 626C 420 290 SH (N 03)4 TA 4V 101 SH 4V
No. K. VINCLA 13 2233 ESTIMATED 0 30 23.40 23.12 ESTIMATED 0 31 10.23 23.7 ESTIMATED 0 31 10.23 23.7 ESTIMATED 0 11.40 32.7 ESTIMATED 11.4 0 11.4 10.2 21.7 N.3.45 0 11.4 10.2 21.7 N.3.45 0 1.4 10.2 10.2 0 11.4 10.1 10.1 10.1 0 0 11.1 11.5 MGA.5 FE.4 51.3 0.12 0 0 11.4 11.4 56.15 10.1 10.1 10.1 0 </td <td>6 7 INUCA 3 327 R (PU+3) 9 INUCA 3 7 748 (PU+3) 9 INUCA 3 7 748 (PU+4) 7 J35C6 8 331 R (PU+4) 7 J35C6 8 331 R (PU+4) 7 A C3CAA 32 2175 R3 VS V R8+1 VI R8+1 VI 7 A C3CAA 32 2175 R3 VS V R8+1 VI 8 TO JAACA 375 255 R82 PB 03 8 TO J35C6 2 40 RA 8 NI F3 7 TO J35C6 2 416 R8 NI F3 8 TO J35C6 2 416 R8 NI F3 8 TO J35C6 2 416 R8 NI F3 8 TO J35C6 2 40 RA 8 R 010 8 TO J35C6 2 40 RA 8 R 010 8 TO J35C6 2 40 RA 8 R 010 8 TO J35C6 2 4 RA 8 R 10 R3 8 TO J35C6 2 4 R 7 R3 8 TO J37 8 TO J3 R0C6 2 2 118 R R4 20 R 10 TO J30 R0C6 2 2 118 R 10 R3 10 TO J30 R0C6 2 10 R12 R 10 R3 10 TO J30 R0C6 2 10 R12 R 10 R3 10 TO J30 R0C6 2 10 R1 R3 V5 V (LA RU 03) 8 TO J3 R0C6 12 D171 R 20 R5 10 SUC6 12 20 SO R4 72 U 00 10 TO J30 R0C6 12 D171 R 20 R5 10 SUC6 12 20 SO R4 72 U 00 10 TO J30 R0C6 12 D171 R 20 SO R3 20 10 TO J30 R0C6 12 D171 R 20 SO R3 20 10 TO J30 R0C6 12 D171 R 20 SO R3 10 SUC6 12 20 SO R3 20 SO R3 20 SO R3 10 SUC6 12 20 SO R3 20 SO R3 10 SUC6 12 20 SO R3 20 SO R3 10 SUC6 12 20 SO R3 20 SO R3 10</td> <td>Sine 2 is "ON 2 and 2 an</td>	6 7 INUCA 3 327 R (PU+3) 9 INUCA 3 7 748 (PU+3) 9 INUCA 3 7 748 (PU+4) 7 J35C6 8 331 R (PU+4) 7 J35C6 8 331 R (PU+4) 7 A C3CAA 32 2175 R3 VS V R8+1 VI R8+1 VI 7 A C3CAA 32 2175 R3 VS V R8+1 VI 8 TO JAACA 375 255 R82 PB 03 8 TO J35C6 2 40 RA 8 NI F3 7 TO J35C6 2 416 R8 NI F3 8 TO J35C6 2 416 R8 NI F3 8 TO J35C6 2 416 R8 NI F3 8 TO J35C6 2 40 RA 8 R 010 8 TO J35C6 2 40 RA 8 R 010 8 TO J35C6 2 40 RA 8 R 010 8 TO J35C6 2 4 RA 8 R 10 R3 8 TO J35C6 2 4 R 7 R3 8 TO J37 8 TO J3 R0C6 2 2 118 R R4 20 R 10 TO J30 R0C6 2 2 118 R 10 R3 10 TO J30 R0C6 2 10 R12 R 10 R3 10 TO J30 R0C6 2 10 R12 R 10 R3 10 TO J30 R0C6 2 10 R1 R3 V5 V (LA RU 03) 8 TO J3 R0C6 12 D171 R 20 R5 10 SUC6 12 20 SO R4 72 U 00 10 TO J30 R0C6 12 D171 R 20 R5 10 SUC6 12 20 SO R4 72 U 00 10 TO J30 R0C6 12 D171 R 20 SO R3 20 10 TO J30 R0C6 12 D171 R 20 SO R3 20 10 TO J30 R0C6 12 D171 R 20 SO R3 10 SUC6 12 20 SO R3 20 SO R3 20 SO R3 10 SUC6 12 20 SO R3 20 SO R3 10 SUC6 12 20 SO R3 20 SO R3 10 SUC6 12 20 SO R3 20 SO R3 10	Sine 2 is "ON 2 and 2 an
No. 4 13 2233 ESTIMATED Adjinca 13 227 ESTIMATED Adjinca 13 237 ESTIMATED Adjinca 13 237 ESTIMATED OH-1 11 Adjinca 53 27 OH-1 II RIOH-11mat(F-11*.04 0H-1 OH-1 NI Adjinca 24 23050 OS-4 VI RIOH-11mat(F-11*.04 0S OS-4 VI RIOH-11mat(F-11*.04 0S OS-5 VI RIOH-11mat(F-11*.04 0S OS-5 VI RIOH-11mat(F-11*.04 0S OS-7 VI RIOH-11mat(F-1*	6 7 INUCA 3 327 R (Pu+3) 6 7 INUCA 3 327 R (Pu+3) 7 1 MUCA 3 327 R (Pu+4) 7 1 MUCA 3 22175 R3 VS V 7 1 MUCA 3 227 R R PU 00) 7 R (Pu+4) R3 VS V (RA2 SR PU 06) 7 R (Pu+3) 7 7 7 ACCA 375 255 R82 PB 03 7 8 1 MUCA 3 1 0 400 R82 S 04 Rei R ACCA 10 1400 R82 S 04 7 8 ACCA 10 1400 R82 S 04 7 10 JSSCE 2 416 R8 N1 F3 7 10 JSSCE 2 416 R8 N1 F3 7 10 JSSCE 2 416 R8 N1 F3 7 10 JSSCE 3 VS V (PROUNSKITES) 8 NS V (Sine: 1 at 000 I unpup: Sine: 2 at 000 Sine:
No. 1 137 2233 ESTIMATED Ad JINCA 30 233 NP CL3 233 NP CL3 Ad JINCA 30 233 NP CL3 Ad JINCA 307 511 Ad JINCA 511 511 Ad JINCA 511 511 OH-1 11 71 Advint 511 511 Advint 511 511 Advint 71 511 Advint 71 511 Advint 71 511 Advint 71 71 Advi	of INUCA 3 327 R (Pu+3) 15 JINCA 3 127 R (Pu+3) 15 JINCA 3 127 R (Pu+4) 7 JINCA 3 227 R (Pu+4) 7 JINCA 3 227 R (Pu+4) 7 JINCA 3 227 R (Pu+4) 7 G (JCAA 52 2175 R3 VS V PU10 VI R3 VS V (RA2 5R PU 06) R8+1 VI R3 VS V (RA2 5R PU 06) R8+1 XI R3 S5 R82 PB 03 R8+1 XI R3 15 255 R82 S 04 R8+1 XI 1640 R82 5 04 R8+1 XI 2 164 R8 NI F3 70 JISCG 2 502 R8 M IF 3 70 JISCG 2 502 R8 NI F3 70 JISCG 2 502 R8 NI F3 70 JISCG 2 502 R8 NI F3 70 JISCG 2 502 R8 V V 80 INCCA 7 LOB LA R8C 01* 80 INCCA 7 LOB LA R8C 01* 81 XI CAA 22 JA06 NOA R22 01 82 XV V V PROVSKITES) 84 XCEGA 72 W TA R2 VV V PROVSKITES) 84 XCEGA 72 W TA R2 VV V PROVSKITES) 84 XCEGA 72 W TA R2 VV V PROVSKITES) 84 XCEGA 72 W TA R2 VV V PROVSKITES) 84 XCEGA 72 W TA R2 VV V PROVSKITES) 85 XV V V PROVSKITES) 84 XCEGA 72 W TA R2 VV V PROVSKITES)	Sine: 1 at 000 24 An SM GE DA UNPUL 36 GL2; 5 M B22 3 M 3 VL 1 OFFAC 15 924 MA SM GE DA 1 OFFAC 15 924 MA SM GE DA 1 OFFAC 16 975 827 912 07 7 G SPACE 15 975 827 915 3 M 2 VL 1 O SPACE 15 975 82 50 F5 3 M 2 VL 1 O SPACE 15 975 82 50 F5 3 M 2 VL 1 A 403 1 R 3 Y 5 V (50 F3) 7 A 406C 25 44 20 YL 1 M 2 VL 1 M 2 VL
No. 1 132 2233 ESTIMATED AS JINCA 30 2233 NPCLS AS JINCA 30 2233 NPCLS AS JINCA 30 223 NPCLS AS JINCA 30 223 NPCLS AS JINCA 30 225 STIMATED AT ANNA S6 1135 NGS.6 FE.4 S13 D12 DH-1 II NICO-1148(F-1)+.04 NICO-1148(F-1)+.04 NICO-1148(F-1)+.04 DH-1 V RICO-1148(F-1)+.04 NICO-1148(F-1)+.04 DH-1 V RICO-1148(F-1)+.04 CS+4 Y RICO-1148(F-1)+.04 OH-1 V RICO-148(F-1)+.04 OH-1 V RICO-148(F-1)+.04 OH-1 V </td <td>6.7 INUCA 3 327 R [Pu+3] 15 JINUCA 3 327 R [Pu+3] 15 JINUCA 3 327 R [Pu+4] 74 JSCS 8 33 R [Pu+4] 74 JSCS 83 2175 R VS 74 JSCS 83 2175 R VS V 74 CJCAA 32 2175 R VS V R 74 CJCAA 32 2175 R VS V R 70 LACAA 37 255 R 20 R</td> <td>SN-2 12 SN SUL SN SUL SN SUL SN SUL SUL SN SUL SN SUL SN SUL SUL SN SUL SN SUL SN SUL SUL SN SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL</td>	6.7 INUCA 3 327 R [Pu+3] 15 JINUCA 3 327 R [Pu+3] 15 JINUCA 3 327 R [Pu+4] 74 JSCS 8 33 R [Pu+4] 74 JSCS 83 2175 R VS 74 JSCS 83 2175 R VS V 74 CJCAA 32 2175 R VS V R 74 CJCAA 32 2175 R VS V R 70 LACAA 37 255 R 20 R	SN-2 12 SN SUL SN SUL SN SUL SN SUL SUL SN SUL SN SUL SN SUL SUL SN SUL SN SUL SN SUL SUL SN SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL SUL SUL SN SUL SUL
No. 4 13 2233 ESTIMATED Adjinca 13 2233 ESTIMATED Adjinca 13 227 ESTIMATED Stinuca 14 237 ESTIMATED OH-1 Attast 23 227 OH-1 Attast 23 227 OH-1 Attast 23 227 OH-1 Attast 23 227 OH-1 II Attast 23	6 7 INUCA 3 327 R (PU+3) PU-5 INUCA 3 7 743 R (PU+3) PU-5 INUCA 3 2273 R (PU+4) 7 J35C6 8 331 R (PU+4) 7 A C3CCA 32 2175 R3 VS V R - C3CCA 32 2175 R3 VS V R - C3CCA 32 2175 R3 VS V R - C3CCA 32 2175 R3 VS V R - C3CCA 32 2175 R3 VS V R - C3CCA 32 245 R2 PD 03 R - C3CCA 32 1640 R2 2 5 04 R - C3CCA 30 1640 R2 2 5 04 R - C3CCA 30 1640 R2 2 5 04 R - C3CCA 32 1640 R2 2 5 04 R - C3CCA 32 1640 R2 2 5 04 R - C3CCA 32 1640 R2 5 04 R - C3CCA 32 1640 R2 5 04 R - C3CCA 32 1640 R2 5 04 R - C3CCA 32 2 175 R3 VS V R - V1 R - R - V1 R - V1 R - V1 R - R - R - R - R - R - R - R - R - R -	Sine: 1 a
No. 1 13 2233 ESTIMATED Adjinca 13 223 ESTIMATED Adjinca 13 227 ESTIMATED DH-1 11 Adjinca 13 Adjinca 13 237 ESTIMATED OH-1 11 RIDM-11mat(F-11*.04 OH-1 RIDM-11mat(F-11*.04 205 OH-1 RIDM-11mat(F-11*.04 OH-1	6 7 INUCA 3 327 R (Pu+3) 915 JINUCA 3 327 R (Pu+3) 91 SIG 8 31 R (Pu+4) 7 JISCS 8 31 R (Pu+4) 7 JISCS 8 31 R (Pu+4) 7 JISCS 8 31 R (Pu+4) 7 LACCA 32 2175 R3 VS V PU 70 LACCA 35 22175 R3 VS V PU 70 LACCA 35 255 R82 PB 03 Ref Ref ALCECA 10 1400 R82 S 04 Ref Ref ALCECA 10 1400 R82 S 04 Ref Ref ALCECA 10 1400 R82 S 04 Ref Ref ALCEA 10 1400 R82 S 04 Ref 10 JSSCB 2 90 R8 U 02 (N 03)2 Ref Ref TO ACSAA 24 3406 M06 R82 011 TO ACSAA Ref TO ACSAA 24 3406 M06 R82 011 TO ACSAA TO ACSAA 24 3406 M06 R82 011 TO ACSAA TO ACSAA 24 3406 M06 R82 011	Sine: 1 at 000 Jan 20 A 2 A 3 A 2 A 2 A 2 A 2 A 2 A 2 A 3 A 3
No. 4 13 2233 ESTIMATED Ad JINCA 13 223 ESTIMATED Ad JINCA 13 227 ESTIMATED AT JINCA 13 227 ESTIMATED AT JINCA 13 227 ESTIMATED AT JINCA 13 227 ESTIMATED DH-1 II AN V V ISA DH-1 II ANA S0 ISA OH-1 II RIDM-11AIF-11+.04 ISA OH-1 NICH-1NAIF-11+.04 ISA ISA 220 OH-1 VI RIDM-1NAIF-11+.04 ISA ISA 220 OH-1 VI RIDM-1NAIF-11+.04 ISA ISA 220 270 OH-1 VI RIDM-1NAIF-11+.04 ISA ISA 220 270 OH-1 VI RIDM-1NAIF-11+.04 ISA 270 270 270 OH-1 VI RIDM-1NAIF-11+.04 270 270 270 270 27	6 7 INUCA 3 3 27 R (PU+3) 9 INUCA 3 7 74 R (PU+3) 9 INUCA 3 2 72 R (PU+4) 7 A C3CA 3 2 2175 R3 V5 V 9 INUCA 3 2 2175 R3 V5 V 9 INUCA 3 2 2175 R3 V5 V 7 C 12CA 3 2 2175 R3 V5 V 8 Rai 1 XI 7 A C3CCA 3 10 1040 R82 5 04 Rai 1 XI 7 A C3CCA 3 10 1040 R82 5 04 Rai 1 XI 7 A C3CCA 10 1040 R82 5 04 Rai 1 XI 7 A C3CCA 10 1040 R82 5 04 Rai 1 XI 7 C 13SCC 2 502 R8 NI F3 7 C 13SCC 2 502 R8 NI F3 7 C 13SCC 3 10 LAK R8C 019 8 INUCA 7 108 LAK R8C 019 8 INUCA 7 108 LAK R8C 019 8 INUCA 7 108 LAK R8C 019 8 INUCA 7 108 LAK R8C 019 8 INUCA 7 205 R82 07 10 N212 7 C C3AA 22 3406 NOA R82 011 7 J XC3AA 22 3406 NOA R82 011 7 J XC3AA 24 3406 NOA R82 011 8 INUCA 7 205 R82 07 10 N212 7 J XC3AA 24 3406 NOA R82 01 7 J XC3AA 24 100 R02 R82 07 8 S X V IPROVSKITES) 8 A C1EA 7 205 R82 07 10 N212 7 J XC3AA 24 107 1827 NAE 00 8 A X1EA 7 205 R82 07 10 N212 7 J XC3AA 24 107 187 187 187 7 J XC3AA 24 107 187 187 7 J XC3AA 24 11 87 187 8 J X V IPROVSKITES) 8 A X1EA 7 205 R82 07 10 N212 7 J XC3AA 24 118 NU 20 7 J XC3AA 22 177 XU DA 5 J NUCA 12 2490 R4 F5 10 SUFCA 32 2177 RU DA 5 J NUCA 12 2727 NU DA 5 J XC3A 12 J77 XU DA 5 J XC3A 12 J77 XU DA 5 J XC3A 12 J77 XU DA 5 J XC3A 12 J77 XU DA 5 J XC3A 12 J77 XU DA 5 J XC3A 12 J77 XU DA 5 J XC3A 24 J77 XU DA 5 J XC3A 24 J77 XU DA 5 J XC3A 24 J77 XU DA 5 J XC3A 24 J77 XU DA 5 J XC3A 32 J77 XU DA 5 J XC3A 32 J77 XU DA 5 J XC3A 32 J77 XU DA 5 J XC3A 32 J77 XU DA 5 J XC3A 32 J77 XU DA 5 J XC3A 32 J77 XU DA 5 J XC3A 32 J77 XU DA 5 J XC3A 32 J77 XU DA 5 J XC3A 32 J77 XU DA 5 J XC3A 32 J77 XU DA 5 J XC3A 32 J77 XU DA 5 J XC3A 32 J77 XU	SN=2 12 SN JA SN SN <t< td=""></t<>

Table 2 (cont.)

	1
72 AC8CA 28 956 BA T8 03 TC+5 VI	
1C+7 1V 69 AC1EA 8 301 TC2 07	U
71 244CH 380 146 122 07 TE+4 1V 69 ACBCA 25 1551 H3 FE2 7E4 012 CL	
71 ACBCA 27 602 71 TE3 08, SN TE3 08, 76 U2, HF TE3 08, ZR TE3 08 71 ACBCA 27 608 U TE3 09 '	ľ
TE+4 VI 61 Σκκκα 116 345 TE ΟΖ 71 Afra 27 602 M TE3 Ω8	
71 ACBCA 27 608 U 7E3 09 TE+6 1V	
78-6 VI 69 ZENBA 24 647 LIG 7E 06	١
70 MRBUA 5 199 MG3 TE D6 69 Acsaa 23 3062 NA2 K4 TE2 08 (D H)2 (H2 O)14 64 INDCA 3 634 K 7E 0 (D H)5+H2 0	
64 NATWA 51 552 K TE O O H 66 ACSAA 20 2138 K4 TE2 06 (0 H}4+H2 O 70 NATWA 57 393 NG3 TE 06	ľ
70 ZAACA 378 129 SR2 N1 TE 06 70 ACSAA 24 3178 TE (0 H16 44 Accaa 20 1535 TE F6	
71 ACBCA 27 815 HG3 TE 06 65 ZAACA 334 225 K TE 02 (0 H)3	Ι.
68 СНОВА 267 1435 СО2 72 06 69 МОСИВ 100 1809 АG2 72 О2 (О Н)4 71 Выгса 94 172 ТЕ (О Н)6	<u>ו</u>
73 ACBCA 29 643 7E2 05 73 ACBCA 29 956 H2 TE2 06 73 ACSAA 27 85 TE (0 H)6	
74 ACGCA 30 1813 H2 TE 04 74 ACGCA 30 2095 (N H4)6 (TE MD6 024) TE (UH)6 74 ACGCA 30 2095 (N H4)6 (TE MD6 024) TE (UH)6	
TH+4 VI 74 CJCHA 52 2175 R3 VS V	
71 ACBCA 27 829 K5 TH F9 71 ACBCA 27 2290 K7 TH6 F31	
74 ICHAA 8 273 K TH P3 010 TH+6 IX 68 CCJ0A 1968 990 (N H414 TH F8	
69 ACBCA 25 1958 (N H4)4 TH F8 68 CCACA 40 147 K TH2 P3 012 . 70 104A 4 571 NA TH2 (P 04)3	
71 ACBCA 27 1823 RB TH3 F13 73 ACBCA 29 2976 NA3 BE TH10 F45	ŀ
71 ACBCA 27 2279 (N H413 TH F7 TH44 X	L
73 ACBCA 29 2687 TH (N 0314 (166 H513 P 012 TH+4 XI 66 ACCRA 20 842 TH (N 0314,5H2 0	l
66 ACCRA 20 836 TH (N 03)4.5H2 0 TH+4 X11 55 ACCRA 18 698 MG TH (N 03)6.8H2 0	ľ
T1+5 V1 73 JSSC8 6 213 714 07	l
74 JSCB 9 255 TI2 03 74 ACBCA 30 662 CS TI IS 04)2+12H2 0	L
TI+4 IV 73 AC6CA 29 2009 BA2 TI 04 61 ACCRA 14 875 BA2 TI 04	
71 JCSIA 1971 1857 TI(+4)-0 74 ZAACA 408 60 RBZ TI 03 TI+4 V	
68 ACBCA 24 1327 Y2 TI 05 TI+4 VI 70 JWKKA 131 278 Y2 TI2 07	ł
71 ACBCA 27 635 N2 H6 TI F6 71 JSSCB 3 340 TI4 07	
64 ACCRA 17 240 CO TI 03 TI JCPSA 55 3206 TI 02	L
72 CSCRC L L BA 110 UIS 72 ZKKRA 136 273 TI 02 74 ZKKRA 139 103 K TI P 05	
72 INOCA 11 2989 (TI OICS H7 UC)272 74 ICHAA 11 243 (NH412 TI OIC2 04)2.H2 O 74 ACBCA 30 2894 BA TI2 05	
74 CJCHA 52 2175 R3 VS V 71+4 VIII 66 JCS1A 1966 1496 T1 (N 0314	l
TL+1 VI R3 VS V (MF)	
75 ACBCA 31 365 TL N 03 TL+3 1V	l
73 ZAACA 396 113 SR4 TL2 07 74 ZAACA 405 19T BA2 TL2 05	
TL+3 VI 68 ZKKKA 126 143 TL2 03 74 ZAACA 405 197 BA2 TL2 05	I
75 ZAACA 412 37 RB TL F4 TL+3 V111 72 ZAACA 393 223 TL F3	
TM+2 VI UNPUL TM 12 TM+2 VII	ł
UNPU1 TH CL2+TH 8R2 TH+3 VI 51 PHSSA 3 K446 TH2 03	ł
TH+3 VIII 70 SSC0A 8 1745 TH3 FE5 012 74 FAACA 403 1 H3 VS V (TH F3)	I
TH-3 IX 74 ZAACA 403 1 K3 VS V (TH F3)	ł
68 JINCA 30 823 R (U+3)	
67 1940CA 3 327 R (4)41 14 CJCMA 52 2175 R3 VS V	I
U** VIII' 70 Acuca 26 38 (n h4}4 u F8 73 Acuca 29 1442 u Cl4	I
U+4 IX 69 ACBCA 25 1919 K U2 F9 69 ACBCA 25 2163 K2 U F6	
71 AC8CA 27 245 C5 U6 F25 73 AC8CA 29 460 C5 U2 F9 74 AC8CA 30 1966 B - NH4 U F5	
U*5 V1 67 ACCRA 23 865 CS U F6 70 JINCA 32 3701 NA U 03	
65 BUFCA 88 214 U CR 04 67 BUFCA 90 257 U FE U4 U45 VIL	
T3 SPHCA 18 323 U2 NO 08 U+6 V1 A CRCA 24 96T CU 11 04	
64 ACACA 25 787 SR U 04, BA U 04, CA2 U 05, SR2 U 05, CA3 U 06,SR3 U 06	
62 JOPQA 23 477 CO U U4 63 ACSAA 19 1955 U F6 (GAS) 71 Ibura 7 455 U R3	

71 JINCA 72 ACRCA	33 2867 CR2 U D6 28 3669 U D2 (0 H)2
73 ACBCA	29 7 U F6
72 ACBCA U+6 VIII 69 ACBCA	28 3609 U 03 25 787 CA U 04
65 ACCRA V+2 V1	19 205 RB U 02 (N 0313
UNPU5 V+3 VI 70 PRVBA	V F2 2 3771 V2 03
73 JSSCB 69 ACBCA	6 419 V4 07 25 1354 V (C5 H7 02)3
69 ZAACA 74 MRBUA 70 JPCSA	369 306 M V2 04 9 1091 (V0.99 CR0.0112 03 31 2569 V2 03
65 ACCRA	19 432 LI V2 05
73 ACBCA 73 ACBCA	29 269 CA V3 07 29 1335 CA V4 09
V+4 VI 72 JSSC8 73 JSSC8	5 446 CU V D3 6 419 V4 07
72 PRVBA 74 ACBCA	5 2541 V 02 CR 30 2644 V3 07
71 ACSAA 70 ACSAA 74 PRVBA	25 2675 V6 013 24 420 V02 10 490 V02
V+5 IV 68 ACBCA	24 292 Y V 04
67 ACSAA 70 ZKKKA	21 590 MN2 V2 07 131 161 843 (V 04)2
71 JSSCB 71 ACBCA	3 458 ND V 04 27 2124 NA3 V 04.12H2 0
71 CJCHA 73 ACBCA	44 1629 NG3 V2 08 29 2304 CO3 V2 08, NI3 V2 08
72 JSSCB 73 CJCHA 71 CJCHA	4 29 FE V 04 51 1004 ZN2 V2 07 49 3056 ZN3 V2 08
73 JSSCB 72 CJCHA	6 538 LI3 V 04 50 3944 CU3 V2 08
73 CJCHA 73 ACBCA 73 ACBCA	51 70 P82 V2 07 29 141 Y V 04 29 138 CU5 V2 010
73 CJCHA 74 ACBCA	51 265 L1 V 03 30 1628 NA V 03
74 NJMMA V+5 V 50 ACSAA	4 1119 V2 05
71 RVCHA 74 ACBCA	8 509 LI V2 05 30 2644 V3 07
73 ACBCA 70 CHDCA	29 567 HG2 V2 07 270 952 CA V2 06
V+5 VI 73 JSSCB	5 432 V P 05
72 CJCHA 73 CJCHA	50 3619 NG V2 06 51 2621 V P 05 ALPHA
74 CJCHA 73 ACBCA	52 2184 K3 V 02 C2 04.3H2 0 29 1743 CU V2 06
67 ST8GA #+6 IV	3 1 R3 VS V (FLUORIDES)
69 ACBCA 71 SPHOA 71 SPHCA	25 1704 K2 W 04 15 636 ND2 W 06 15 928 PB W 04
72 ACBCA 71 JCPSA	28 3174 SN M 04 55 1093 SR W 04,88 W 04
74 ACBCA 74 ACBCA	30 1872 NA2 W 04 30 1878 ALZ (W 04)3
W+6 V 74 ACBCA W+6 V1	30 2587 CA3 W 05 CL2
69 SPHCA 69 SSCDA	13 933 HG W 04 7 1797 812 W 06 14 518 K ND (M 04)2
TO SPHCA	14 515 L12 FE W2 08 15 28 PR2 W2 09
70 ACBCA 70 JSSCB 66 ACSAA	2 278 LI FE (W 04)2 2 278 LI FE (W 04)2 20 2698 W F6 (GAS)
72 LENBA 71 SPHCA	27 203 SN M 04 15 991 ND4 M3 015 10 5 667 M 04
74 ACBCA XE+8 IV	30 2069 BA W 04
71 JCPSA 71 JCSIA	52 812 XE 04 1971 1857 XE(+8)-0
64 INOCA 64 INOCA	3 1412 NA4 XE 06-8H2 0 3 1417 NA4 XE 06-6H2 0
¥+3 VI 67 ACCRA	22 354 Y2 8E 04
68 [AACA 67 SPHCA 69 ACRCA	358 138 SR Y2 04 11 583 NA Y SI 04 25 2140 Y2 03
71 SPHCA 74 JCSTA	15 806 Y2 S1 05 1974 229 666 H72 13 N12 06 Y
68 INOCA Y+3 VIII	7 1777 Y(C6H5COCHCOCH313+H20
68 ACBCA 57 ACCRA	24 292 Y V 04 10 239 Y3 FE5 012 12 1095 K Y M02 08
69 SPHCA 70 ZKKKA	13 420 K Y W2 U8 131 278 Y2 T12 07
67 ACCHA 74 ZAACA 74 3 IX	403 1 R3 VS V (Y F3)
59 ZKKKA 74 ZAACA 78 2 VI	112 362 Y (C2 H5 \$ 0413.9H2 0 403 1 R3 YS V (Y F3)
71 ZAACA YB+2 VI1	386 221 YB BR2, YB 12
74 ZAACA 71 ZAACA Y8+2 VIII	386 221 YB BR2
71 ZAACA YB+3 VI 70. COMPA	386 221 YB F2 14 854 Y82 SI 05
70 ACBCA 70 ZAACA	26 484 Y82 SI2 07 177 70 CA Y82 04, SR Y82 04
14 ACBCA 98+3 VII 70 SPHCA	14 854 Y82 \$1 05
69 INDCA 69 INDCA 78+3 VIII	8 22 Y8 (C5 H7 0213 (H2 0) 8 29 Y8 (C5 HT 0213 (H2 0) 1/2 C6 H6
70 INDCA 70 SSCOA	9 1096 YB L1 F4 8 1745 YB3 FE5 012 9 179 YB P5 016
14 244C4 YB+P IX	403 1 R3 VS V (Y8 F3)
74 ZAACA ZN+2 IV 68 SPHOA	403 L R3 VS V LYB F3) 12 987 NA2 ZN2 SI2 07
69 AC8CA	25 1233 ZN 0

NG PHSSA 32 KG1 ZN FE2 04
73 ACSAA 27 1541 ZH S 03.2 1/2HZ 0 64 INDCA 3 245 ZH (DPH)2
ZN+2 V TO JSSCB 1 120 ZN2 P2 07 T3 CJCHA 51 1004 ZN2 V2 D7
71 ANNIA 56 1147 ZN4 AS2 08 (0 H12+2H2 0 ZN+2 VI 2 State 12 Stat
68 SPHCA 13 127 2N # 04 70 JSSCB 1 120 2N2 P2 07
71 CJCHA 49 3056 ZH3 VZ 08 71 Ammia 56 1147 ZH4 AS2 08 (0 H)2+2H2 0 73 Aches 20 2741 ZH (5 EA AH2 0
73 ACSAA 27 1541 2N \$ 03.2 1/2H2 0 2R+4 IV
75 JSSCB 13 275 R3 VS V (M4 ZR O4) ZR+4 V 69 CCJDA 1969 727 K2 ZR O3
70 JSSCB 2 410 K2 ZR 03 ZR+4 VI
69 ZAACA 371 306 L12 ZR 03 70 JSSCB 1 478 K2 ZR2 05
68 ACSAA 22 1822 NA 2R2 P3 012 73 ACBCA 29 2294 L12 2R F6 71 ACBCA 27 1946 R85 784 F21
74 CJCHA 52 2175 R3 V5 V 2R+4 V11
69 ACBCA 25 2164 NAZ ZR F6 70 ACBCA 26 417 (N H413 ZR F7 70 JACTA 53 126 ZR 02
73 ACSAA 27 177 284 10 H}6 (CR 04)5-H2 0 73 ACSAA 27 2014 28 10 HJ2 5 04-H2 0
71 ACBCA 27 1944 KB5 284 F21 2844 9111 - 69 ACBCA 25 1558 282 (\$ 0414 (H2 D)8.6H2 D
69 ACBCA 25 1566 282 (S 04)4 (H2 0)8.2H2 0 69 ACBCA 25 1572 282 (S 04)4.5H2 0 71 ACBCA 27 A38 N2 H6 28 F6
71 AMMIA 56 782 ZR SI 04 63 INDCA 2 243 ZR (ACAC)4
/1 ACBCA 27 1944 885 284 F21 63 190CA 2 250 844 28 (C2 04)4.3H2 0
KEF 1 G. E. BROWN, PH.D. THESIS, VIRGINIA Polytech.inst., univ.microfilms,74-498
REF 2 N. BARNIGHAUSEN ET AL., PROC. 10TH R.E.
RES.CONF.CAREFREE.ARIZ(1973)P.490 REF 4 C.BRANDLE+H.STEINFINK,PROC.TTH R.E. RES.CONF.CORDADD.CAL.OCT 28.1968
REF 5 R.D. SHANNON, U.S. PAT. 3663181, MAY16, 1972 REF 6 W.H. BAUR, NI TROGEN, HANDBOOK OF GEUCHEM.
SPRINGER-VERLAG,N.Y.1974 REF 7 A.W.SLEIGHT,U.S.PAT.3849544,NDV 19,1974 UNPU1 M.BARNIGHAUSEN,PERSDNAL COMMUNICATION
UNPU2 A.W.SLEIGHT, PERSONAL COMMUNICATION UNPU3 C.CALVO, PERSONAL COMMUNICATION
UNPUS W.H.BAUR, PERSONAL COMMUNICATION
ACACB ACTA CRYST. SECT. A ACBCA ACTA CRYST. SECT. B ACCRA ACTA CRYST.
ACIEA ANGEW. CHEM. INT. ED. Aciaa Acta Chem. Scand.
ADCSA RUV. CHER. SER. Ammia AM. Miner. Ancpa Annis Chim.
ARKEA ARK. KEMI Bapca Bull. Acad. Pol. Sci. Ser. Sci. Chim. Basia Bull. Chem. Soc. Japan
BSCFA BULL, SOC, CHIM, FR. Bufca Bull, Soc, Fr. Miner, Cristallogr.
CCACA CROAT. CHEN. ACTA CCJDA CHEM. COMMUN.
CHDBA C. R. HEBD. SEAN. ACAD. SCI. SEX. B Chdba C. R. HEBD. SEAN. ACAD. SCI. SER. C Chdbb Chem. Phys. Lett.
CIWYA GARNEGIE INST. WASH. YEARBOOK Gjcha Gan. J. Chem. Csche Cryst. Struct. Comm.
CZYPA CZECH. J. PHYS. Danka Dokl. Akad. Hauk. SSSR
HCACA HELV. CHIM. ACTA Ichaa Inorg. Chim. Acta Indca Inorg. Chem.
INOMA RUSS. J. INORG. CHEM. Inuca inorg. Nucl. Chem. Lett. Ivuna izv. Akad. Nauk SSSR. Nforg. Chem.
JACSA J. AN. CHEN. SOC. JACGA J. APPL. CRYSTALLOGR.
JALIA J. AM. LEKAM. SUL. Japia J. Appl. Phys. James J. Cryst. Molec. Struct.
JCOMA J. L'SS-COMMON METALS JCPSA J. Chem. Phys. JCSIA J. Chem Soc. Lond. (Dalton)
JCSPA J. CHEM. SOC. LOND. (PEAKIN 11) JESUA J. ELECTROCHEM. SOC.
JMOSA J. HOLEC. SPECTROSC. JNBAA J. RES. NAT. BUR. STAND. SECT. A
JUPUA J. PHYS. (FR.) JPCHA J. PHYS. CHEM, JPCSA J. PHYS CHEM, SOLIDS
JSSCB J. SOLID STATE CHÉM. JSTCA J. STRUCT. CHÉM. Jupca J. Phys. Soc. Japan
NNLMS MINERALDG. NAG. NGCHB MH. CHEM.
MRBUA MATER. RES. BULL. MSAPA MIN. SOC. AMER. SPEC. PAPER Natua Nature,LOND.
NATWA NATURWISSENSCHAFTEN Njmia neues jb. Miner. Abh. Nimma Neues jb. Miner. MM.
PEPIA PHYS. EARIH PLANET. INTERIORS PHSSA PHYS. STATUS SOLIOI
PISAR PRUC, INDIAN ACAU, SCI. A PISBA PROC, INDIAN ACAD, SCI. B PRLAA PROC, R. SDC. SERIES A
PRVAA PHYS. REV, SECT. A Prvba Phys. Rev. Sect. B Phyva Phys. Rev.
RTCPB RECL TRAV. CHIM. PAYS-BAS Rycma Revue Chim. Miner. (FR.)
SCIEA SCIERCE Sphca Sdviet Phys. Crystalldgr. Sphda Sdviet Phys. Odkl.
SSCOA SOLID STATE COMMUN. STBGA STRUCT. AND BONG. TFSUA TRANS. FARADAY SOC
MPMTA TSCHERMAKS MINER. PETROGR. MITT. UNPUI (UNPUBLISHED REFERENCE)
ZARKA Z. KRISTALLOGR. MINER. Zerka Z. Kristallogr. Miner. Zepta Z. Phys.
ZENGA Z. NATURF. Zstka zh. strukt. khim.

compounds to be slightly larger than those of the Eu^{2+} compounds. This difference was assumed to exist for all Sr^{2+} and Eu^{2+} coordinations. Because compounds of Am^{2+} and Sr^{2+} have similar cell volumes, the radius of Am^{2+} was made equal to that of Sr^{2+} .

Wolfe & Newnham (1969) studied Bi_{4-x}RE_xTi₃O₁₂ and concluded that Bi³⁺ and La³⁺ have nearly equal radii. From a study of BiTaO₄ Sleight & Jones (1975) have concluded that although Bi³⁺ and La³⁺ have essentially equal radii, the size of Bi³⁺ depends on the degree of the 6s² lone-pair character. When BiTaO₄ transforms from a structure where the lone-pair character is dominant to the LaTaO₄ structure, it undergoes a volume reduction. Table 3 shows a comparison of isotypic Bi³⁺ and La³⁺ compounds where the lone-pair character of Bi^{3+} is (1) constrained and (2) dominant. Bi pyrochlores such as $Bi_2Ru_2O_7$, $Bi_2Ir_2O_7$ and $Bi_2Pt_2O_7$ were omitted from the table because no corresponding La pyrochlore exists, but they have unit-cell volumes close to those of the Sm or Nd pyrochlores and thus have smaller volumes than those of La. When Bi^{3+} is forced into high symmetry, a Bi^{3+} compound has a smaller volume than that of La^{3+} , but when the lonepair character is dominant, the Bi³⁺ compound is distorted and Bi³⁺ and La³⁺ compounds have approximately equal volumes. This behavior was also noted in the highly symmetric garnet structure where the hypothetical Bi₃Fe₅O₁₂ was estimated to have cell dimensions between those of the hypothetical Nd₃Fe₅O₁₂ and Pr₃Fe₅O₁₂ (Geller, Williams, Espinosa, Sherwood & Gilleo, 1963). For practical purposes, Bi³⁺ is listed as slightly smaller than La³⁺ but this dependence on lone-pair character must be kept in mind when comparing the volumes of Bi³⁺ and La³⁺ compounds. Similar behavior may also exist for Pb²⁺ and Sr^{2+} , but this relationship was not investigated.

 Table 3. Cell volumes of isotypic Bi³⁺ and La³⁺ compounds

(a)	Lone pair character of I	Bi ³⁺ constrained	
	Compound	Cell volume	Ratio
	BiLi(MoO ₄) ₂	314.7	0.96
	LaLi(MoO ₄) ₂	328.7	
	$BiNa(MoO_4)_2$	320.5	0.97
	$LaNa(MoO_4)_2$	332.1	
	BiOF	87.6	0.90
	LaOF	97.7	
	BiOCl	110.7	0.95
	LaOCl	116.8	
	BiOBr	123.8	0.98
	LaOBr	126.4	
	BiPO₄	293·0	0.96
	LaPO ₄	304.7	
(b)	Lone pair character of	Bi ³⁺ dominant	
	Bi ₂ MoO ₆	$268.5 (\times 8)$	1.00
	La_2MoO_6	267.3	
	BiFeO ₃	62·49 (×6)	1.03
	LaFeO ₃	60·77 (×4)	
	Bi ₂ Sn ₂ O ₇	1219.9 ($\times 8$)	1.00

1225.3

La₂Sn₂O₇

A similar study of relative cell volumes of isotypic compounds involving the pairs Cu^+-Li^+ , Ag^+-Na^+ , Tl^+-Rb^+ , and $Pb^{2+}-Sr^{2+}$ was used to obtain more reliable estimates of the radii of Cu^+ , Ag^+ , Tl^+ , and Pb^{2+} (Shannon & Gumerman, 1975).

The nature of Sn^{2+} , NH_4^+ , and H^- made it impossible to define their ionic radii. The coordination of Sn^{2+} by oxygen or fluorine is always extremely irregular,* leading to average distances which depend on the degree of distortion. Since this distortion varies widely from one compound to another, it is not meaningful to define an ionic radius.

Khan & Baur (1972) derived an apparent radius of the NH_4^+ ion by analyzing the N–O distances in a large number of ammonium salts. They concluded that NH_4^+ has an octahedral radius of 1.61 Å, between that of Rb⁺ (1.52 Å) and Cs⁺ (1.67 Å). Alternatively, cell volumes of NH_4^+ and Rb⁺ fluorides, chlorides, bromides, iodides and oxides may be compared. This leads to the conclusion that NH_4^+ is not significantly different in size from Rb⁺. No explanation is offered for this inconsistency and therefore the radius of NH_4^+ is not included.

The radius of the hydride ion, H⁻, has been the subject of some controversy. A number of different radii have been proposed: 2.08 (Pauling, 1960); 1.40 (Gibb, 1962); and 1.53 Å (Morris & Reed, 1965). Gibb studied interatomic distances in many hydrides and concluded that good agreement between observed and calculated distances could be obtained using $r(^{VI}H^{-}) =$ 1.40 Å if corrected for cation and anion coordination. The value of $r(^{IV}H^{-})$ was taken to be 1.22 Å.

Morris & Reed (1965) concluded that differences in observed distances in hydrides were caused by the large H^- polarizability. Because of such wide variations in the apparent H^- radius, it was omitted. However, an explanation for the variations based on covalence differences will be discussed later.

^{*} Although cell dimensions of $Sn_2M_2O_7$ pyrochlores were used in SP 69 to derive $r(^{YIII}Sn^{2+})$, Stewart, Knop, Meads & Parker (1973) and Birchall & Sleight (1975) recently found that the pyrochlore A site in $Sn_2Ta_2O_7$ is not fully occupied. Thus, even this example of apparently regular Sn^{2+} polyhedra is not valid.

Fig. 1. Effective ionic radius (Å) vs oxidation state.

Results and discussion

In Table 1 two sets of radii are included. The first is a set of traditional radii based on $r(^{VI}O^{2-}) = 1.40$ Å. The

other set is based on $r(^{vI}O^{2-}) = 1.26$ and $r(^{vI}F^{-}) = 1.19$ Å, and corresponds to crystal radii as defined by Fumi & Tosi (1964). As pointed out in SP 69, crystal radii differ from traditional radii only by a constant factor

Fig. 2. (a)-(e) Effective ionic radius (Å) vs CN for some common cations.

of 0.14 Å. Although their inclusion in Table 1 may seem superfluous, it is felt that crystal radii correspond more closely to the physical size of ions in a solid. They should be used, for example, in discussions of closest packing of spheres, structure field maps (Muller & Roy, 1974), and diffusion in solids (Flygare & Huggins, 1973). Traditional radii have been retained because of their familiarity to crystal chemists and physicists. They will probably continue to be used for comparison of unit-cell volumes and interatomic distances. In the table, the ion is followed by electron configuration (EC), coordination number (CN), spin state (SP), crystal radius (CR), and effective ionic radius (IR), and in the last column, a symbol indicating the derivation of the radii and their reliability. Those with a question mark are doubtful because of: uncertainty in CN, or deviation from radii vs CN, or radii vs valence plots. Where at least five structural determinations resulted in radii differing by no more than ± 0.01 Å, the values are marked with an asterisk.

When the choice of a radius was influenced by any of the various correlations described earlier, it is indicated by the following: $R - \text{from } r^3 vs$ unit cell volume plots; C - calculated from bond length-bond strength equations; E - estimated from one or more plots of rvs valence, r vs CN, and r vs cell volume. E implies poor or nonexistent structural data. Radii in this category include $v^{I}Fe^{2+}LS$, $v^{I}Mn^{2+}LS$, $v^{I}Cr^{2+}LS$, $v^{I}V^{2+}$, $v^{I}No^{2+}$, $v^{I}Ni^{3+}HS$, $v^{I}Ir^{3+}$, $v^{I}Mo^{3+}$, $v^{I}Ta^{3+}$, $v^{I}Pa^{3+}$, $v^{I}Ta^{4+}$, $^{Iv}Pb^{4+}$, $v^{I}Ir^{5+}$, $v^{I}Os^{5+}$, $v^{I}Re^{5+}$, $v^{I}Pu^{5+}$, $v^{I}Bi^{5+}$, ^{v1}Os⁶⁺, ^{v1}Re⁶⁺, and ^{v1}Os⁷⁺. The symbol A means that Ahrens (1952) ionic radius was used whereas P means Pauling's (1960) crystal radius was used. The symbol M means that the radius was derived from a compound having metallic conductivity. Distances calculated from these radii may be too small for use in compounds having localized electrons. (See discussion Effects of electron delocalization.)

In addition, the sources of the radii are indicated in Table 2.

Fig. 2(a)-(e) shows that r-CN plots are reasonably regular. Notable exceptions are ^{1V}Na⁺, ^VNa⁺, and ^{1V}K⁺. It is apparent that Na-O and K-O distances do not decrease as much as anticipated from the r-CN curve^{*} when the CN falls below six. Typical distances and corresponding radii in Table 4 show that Na-O distances in four-coordination are only slightly less than in six-coordination. The reduction in interatomic distances is caused primarily by the decreased repulsive forces due to fewer ligands according to the expression of Pauling (1960):

$$\frac{R_{\rm CsCl}}{R_{\rm NaCl}} = \left[\frac{A_{\rm NaCl}}{A_{\rm CsCl}} \frac{B_{\rm CsCl}}{B_{\rm NaCl}}\right]^{1/(n-1)}$$

where R=interatomic distance, A=Madelung constant, B=the cation CN and n=Born repulsion coefficient. It appears that this equation is not valid for four-coordinated Na⁺ or K⁺.

There are a few small irregularities in r-CN plots probably caused by poor or insufficient data, *e.g.* curves for Tl³⁺ vs Y³⁺. The differences in slopes of Ti⁴⁺ vs Cr⁴⁺ and V⁵⁺ vs As⁵⁺ are probably caused by Ti⁴⁺-O and V⁵⁺-O octahedra being generally more distorted, which leads to greater average interatomic distances.

It is also interesting to compare distances in square planar coordination *versus* tetrahedral coordination. Radii of square planar Cu^{2+} and Ag^{+} are equal to or slightly greater than corresponding tetrahedral radii, consistent with the trend anticipated from anion

* Extrapolation of the Na curve gives $r(^{1V}Na^+)=0.90$ Å.

Fig. 3. Typical bond length vs bond strength plot.

repulsion effects. A similar comparison with Fe^{2+} and Ni^{2+} cannot be made because of electron distribution changes from tetrahedral to square planar coordination.

Fig. 4. Mean Nb^{s+} -O bond length vs distortion. Vertical bars represent average e.s.d.'s quoted by the authors. Solid circles represent more accurate data.

Fig. 5. Mean Mo⁶⁺-O bond length vs distortion.

Table 4. Interatomic distances in some compounds containing tetrahedral and octahedral Na⁺

Compound	\bar{R} (Å)	r (Å)	Reference
(a) ^{IV} Na ⁺			
Na ₂ O	2.40	1.02	
$Na_5P_3O_{10}$	2.37	0.99	60 ACCRA 13 263
NaOH H ₂ O	2.36	1.00	57 ACCRA 10 462
Na ₆ ZnO ₄	2.39	0.99	69 ZAACA409 69
Mean	2.38	1.00	
(b) ^{v1} Na ⁺			
Na₂WO₄	2.38	1.00	74 ACBCA 30 1872
NaC ₆ O ₇ H ₇	2.37	1.01	65 ACCRA 19 561
Na ₄ Sn ₂ Ge ₄ O ₁₂ (OH) ₄	2.39	1.02	70 ACSAA 24 1287
$Na_2P_2O_7.10H_2O$	2.48	1.10	64 ACCRA 17 672
NaHCO ₃	2.44	1.06	65 ACCRA 18 818
$Na_2B_4O_6(OH)_2.3H_2O$	2.41	1.04	67 SCIEA 154 1453
$Na_4P_4O_{12}.4H_2O$	2.415	1.05	61 ACCRA 14 555
$NaAl(SO_4)_2 \cdot 12H_2O$	2.45	1.10	67 ACCRA 22 182
NaB(OH)4.2H2O	2.460	1.09	63 ACCRA 16 1233
NaU acetate	2.375	1.025	59 ACCRA 12 526
$C_{10}H_{13}N_5NaO_6P.6H_2O$	2.406	1.046	75 ACBCA 31 19
Mean	2.42	1.05	

Factors affecting mean interatomic distances

Additivity of radii to give mean interatomic distances is not so important to the synthetic chemist who is primarily interested in ionic radii for predicting substitution in crystal structures. Crystallographers and physicists, however, are concerned with comparing calculated and experimental interatomic distances and predicting distances, e.g. for distance least-squares (DLS) structure refinements (Baur, 1972; Tillmanns, Gebert & Baur, 1973; Dempsey & Strens, 1975). The effective ionic radii in Table 1 can be used to reproduce moderately well most average interatomic distances in oxides and fluorides. However, certain deviations do occur. Some of these are unexplained but others can be attributed to (1) polyhedral distortion, (2) covalence, (3) partial occupancy of cation sites, or (4) electron delocalization.

1. Polyhedral distortion

To see the effects of polyhedral distortion consider the relationship between bond length (R) and Pauling bond strength (s) (Brown & Shannon, 1973). The analytical expression $s = s_0(R/R_0)^{-N}$, where s_0 is an ideal bond strength associated with R_0 , and R_0 and N are fitted parameters, was evaluated for cation-oxygen pairs for the first three rows of the periodic table. Using these relationships, the sums of bond strengths about cations and anions were found to equal the valences with a mean deviation of about 5%. Accepting the approximate validity of Pauling's second rule, $p = \sum s$ where p = valence, it is possible to derive the effects of distortion of various polyhedra on their mean bond distances. Fig. 3 shows a typical R-s curve. An undistorted octahedron results in an average bond strength \bar{s} and a mean distance \bar{R}_1 . A distorted octahedron with three bonds of length R_a and three of length R_b results in the same average bond strength, \bar{s} , but a mean distance $\bar{R}_2 > \bar{R}_1$.

The effects of distortion on mean bond lengths in numerous polyhedra have been determined. Although distortions in tetrahedra are not as important as in octahedra, they can contribute to variations in mean tetrahedral distances (Baur, 1974; Hawthorne, 1973). Strongly distorted octahedra like those containing V⁵⁺, Cu²⁺, and Mn³⁺ show a significant variation in mean distance with distortion, Δ^* (Brown & Shannon, 1973; Shannon & Calvo, 1973*a*; Shannon, Gumerman & Chenavas, 1975). Octahedra containing Mg²⁺, Zn²⁺, Co²⁺, and Li⁺ are generally less distorted than those of V⁵⁺, Cu²⁺, and Mn³⁺ and show a less pronounced dependence on mean bond length (Brown & Shannon, 1973).

The effects of distortion on mean bond lengths in $Nb^{5+}-O$ and $Mo^{6+}-O$ octahedra are illustrated in Figs. 4 and 5. Tables 5 and 6 list the data used to derive the figures.

Table 7 lists the results of linear regression analyses of mean bond length on distortion for all octahedra studied. It is clear from Fig. 4 that undistorted Nb⁵⁺ octahedra in pyrochlores have a distinctly smaller mean value than in compounds like NbOPO₄, CaNb₂O₆, and Na₃NbO₄. Most of the accurately refined molybdates have relatively distorted octahedra. However, certain ordered perovskites with no octahedral distortion such as Ba₂CaMoO₆ would be expected to have much smaller mean Mo⁶⁺–O distances than a typical molyb-

* Octahedral distortion is defined by $\Delta = \frac{1}{6} \sum (R_i - \bar{R}/\bar{R})^2$ where \bar{R} = average bond length and R_i = an individual bond length. date. In fact, the Mo⁶⁺–O octahedra in $Mo_2(O_2C_6Cl_4)_6$ with a very small distortion have the short mean distance of 1.919 Å.

Table 7 also lists the results of regression analyses for Ta⁵⁺–O and W⁶⁺–O octahedra but they are only approximate because of the scarcity of accurate structural data. Analysis of Ti⁴⁺–O octahedra was unsuccessful because of scatter in the data. Distances in Ba₆Ti₁₇O₄₀ (Tillmanns & Baur, 1970) and BaTiO₃ (Evans, 1951) deviated significantly from a linear relation.

Relations between mean distance and distortion should be particularly useful to help determine oxidation states in mixed valence compounds with such combinations as $Mo^{5+}-Mo^{6+}$, $W^{5+}-W^{6+}$, $V^{4+}-V^{5+}$, $Nb^{4+}-Nb^{5+}$ and $Mn^{3+}-Mn^{4+}$. Such considerations helped rationalize Mn–O distances in NaMn₇O₁₂ and the mineral pinakiolite (Shannon, Gumerman & Chenavas, 1975).

The radii in Table 1 are generally derived for an average degree of distortion. Thus, interatomic distances calculated from these radii may be inaccurate if the distortion in a particular compound is much less or greater than usual. This applies particularly to cations whose polyhedra frequently show a large distortion, *e.g.* Mo^{6+} , Nb^{5+} , V^{5+} , Ba^{2+} , and the alkali ions.

2. Effects of partial occupancy of cation sites on mean cation-anion distances

In compounds with partially occupied sites, abnormally large cation-anion distances are usually found, as expected if the anions surrounding unoc-

Table 5. Comparison of	mean octahedral Nb ⁵⁺ -	O distances with	distortion
Only structures with e	e.s.d.'s for Nb–O distances	of < 0.025 Å were	used.

		Distortion			
Compound	⁻ <i>R</i> (Å)	$\Delta = \langle (\Delta R/R)^2 \rangle \times 10^4$	Reference		
Hg,Nb,O7	1.999	0	68 INOCA	7	1704
$Cd_2Nb_2O_7$	1.957	0	72 CJCHA	50	3648
Na ₂ Nb ₄ O ₁₁	1.977	1	70 JSSCB	1	454
Ba _{0.27} Sr _{0.75} Nb ₂ O _{5.78}	1.967	6	61 JCPSA	48	5048
Na13Nb35O94	1.965	7	71 JSSCB	3	89
$Ba_3Si_4Nb_6O_{26}$	1.989	9	70 ACBCA	26	102
Na13Nb35O94	1.967	11	71 JSSCB	3	89
Na13Nb35O94	1.959	12	71 JSSCB	3	89
Na13Nb35O94	1.964	12	71 JSSCB	3	89
NaNbO ₃	1.985	16	69 ACBÇA	25	851
Na13Nb35O94	1.947	18	71 JSSCB	3	89
Na13Nb35O94	1.991	22	71 JSSCB	3	89
Na13Nb35O94	1.987	22	71 JSSCB	3	89
Na13Nb35O94	1.978	24	71 JSSCB	3	89
LiNb ₃ O ₈	1.993	28	71 ACSAA	25	3337
LiNbO ₃	2.000	31	66 JPCSA	27	997
$Ca_2Nb_2O_7$	1.997	31	74 JINCA	36	1965
$Ca_2Nb_2O_7$	2.005	34	74 JINCA	36	1965
SbNbO₄	2.003	37	65 CCJDA	1965	611
KNbO ₃	2.011	42	67 ACACA	22	639
Na ₃ NbO ₄	2.013	52	74 BUFCA	97	3
$Ca_2Nb_2O_7$	2.010	53	74 JINCA	36	1965
$Ca_2Nb_2O_7$	2.015	58	74 JINCA	36	. 1965
Na ₃ NbO ₄	2.021	60	74 BUFCA	97	3
CaNb ₂ O ₆	2.021	76	70 AMMIA	55	90
GaNbO₄	2.031	83	65 ACACA	18	874

Table 6. Comparison of mean octahedral Mo ⁶⁺ –O distances with disto	rtion
Only structures with e.s.d.'s for Mo–O distances of <0.025 Å were used.	

		Distortion				
Compound	\bar{R} (Å) $\Delta = \langle (\Delta R/R)^2 \rangle \times 10^4$		Reference			
$Mo_2(O_2C_6Cl_4)_6$	1.919	5	75 JACSA	97	2123	
Mo ₄ O ₁₁ orthorhombic	1.944	9	63 ARKEA	21	365	
Mo ₄ O ₁₁ monoclinic	1.946	10	63 ARKEA	21	365	
Mo ₄ O ₁₁ monoclinic	1.937	56	63 ARKEA	21	365	
Mo_4O_{11} orthorhombic	1.951	67	63 ARKEA	21	365	
Mo ₄ O ₁₁ orthorhombic	1.911	96	63 ARKEA	21	365	
Mo ₄ O ₁₁ monoclinic	1.945	96	63 ARKEA	21	365	
$(C_{15}H_{11}O_2)_2MoO_2$	1.952	99	74 ACBCA	30	300	
$(NH_4)_6[MO_7O_{24}].4H_2O$	1.962	99	75 JCSIA	1975	505	
$(NH_4)_6[MO_7O_{24}].4H_2O$	1.972	101	75 JCSIA	1975	505	
$(NH_4)_6[MO_7O_{24}].4H_2O$	1.960	104	75 JCSIA	1975	505	
LiMoO ₂ AsO ₄	1.967	104	70 ACSAA	24	· 3711	
$(NH_4)_6 Mo_8 O_{27}.4H_2 O$	1.960	106	74 ACBCA	30	48	
HgMoO ₄	1.965	111	73 ACBCA	29	869	
$(NH_4)_6[MO_7O_{24}].4H_2O$	1.955	113	75 JCSIA	1975	505	
$(NH_4)_6[MO_7O_{24}].4H_2O$	1.962	115	75 JCSIA	1975	505	
$(NH_4)_6[MO_7O_{24}].4H_2O$	1.974	118	68 JACSA	90	3275	
$MoO_3.2H_2O$	1.966	121	72 ACBCA	28	2222	
$MoO_3.2H_2O$	1.961	123	72 ACBCA	28	2222	
MoO ₃ .2H ₂ O	1.957	126	72 ACBCA	28	2222	
MoO ₃ .2H ₂ O	1.953	134	72 ACBCA	28	2222	
$(NH_4)_5[MoO_3)_5(PO_4) (HPO_4)].3H_2O$	1.970	140	74 JCSIA	1974	941	
$Na_3(CrMo_6O_{24}H_6).8H_2O$	1.976	141	70 INOCA	9	2228	
$(NH_4)_6 Mo_8 O_{27}.4H_2 O$	1.976	141	74 ACBCA	30	48	
$Na_3CrMo_6O_{24}H_6.8H_2O$	1.976	143	70 INOCA	9	2228	
$(NH_4)_5[(MoO_3)_5(PO_4) (HPO_4)] . 3H_2O_2$	1.974	145	74 JCSIA	1974	941	
$(NH_4)_6[TeMo_6O_{24}]$. Te $(OH)_6$. 7H ₂ O	1.981	147	74 ACBCA	30	2095	
CoMoO ₄	1.991	150	65 ACACA	19	269	
$(NH_4)_6 Mo_8 O_{27} \cdot 4H_2 O$	1.972	151	74 ACBCA	30	48	
MoO ₃	1.981	151	63 ARKEA	21	357	
$(NH_4)_6[Mo_7O_{24}].4H_2O$	1.976	152	68 JACSA	90	3275	
$K_{2}[MoO_{2}(C_{2}O_{4}) (H_{2}O)]_{2}O\}$	1.976	152	64 INOCA	3	1603	
$(NH_4)_6 Mo_8 O_{27} \cdot 4H_2 O$	1.974	152	74 ACBCA	30	48	
$(NH_4)_5[(MoO_3)_5(PO_4) (HPO_4)] . 3H_2O$	1.982	159	74 JCSIA	1974	941	
$Na_3CrMo_6O_{24}H_6.8H_2O$	1.986	163	70 INOCA	9	2228	
$(NH_4)_5[(MoO_3)_5(PO_4) (HPO_4)].3H_2O$	1.977	167	74 JCSIA	1974	941	
MoO ₃ . H ₂ O	1.984	167	74 ACBCA	30	1795	
$(NH_4)_5[(MoO_3)_5(PO_4) (HPO_4)].3H_2O$	1.991	186	74 JCSIA	1974	941	
$(NH_4)_6[MO_7O_{24}].4H_2O$	1.991	189	75 JCSIA	1975	505	
$(NH_4)_6[MO_7O_{24}].4H_2O$	2.008	197	75 JCSIA	1975	505	

Table 7. Variation of mean M-O distance and effective ionic radius in octahedral environments as a function of distortion

	Maximum					Correlation	Goodness
Ion	$\varDelta imes 10^4$	N^*	R_0^{\dagger}	r ₀ ‡	m	coefficient	of fit ($\times 10^3$)
Mo ⁶⁺	212	38	1.920		3.73	0.74	67
				0.572	3.01	0.63	70
W ⁶⁺	122	7	1.925		3.30	0.75	19
				0.565	3.28	0.66	24
V ⁵⁺	576	16	1.887		2.62	0.98	8
Nb⁵+	83	29	1.976		6.45	0.69	71
				0.599	6.83	0.44	99
Ta⁵+	79	6	1.984		6.70	0.81	18
				0.617	3.79	0.12	46
Mn ³⁺	71	15	1.994		7.08	0.82	30
				0.624	6.15	0.54	50
Cu ²⁺	316	26	2.085		3.99	0.82	77
Mg ²⁺	156	28	2.094		8.31	0.72	21
;				0.728	8.86	0.77	18
Co ²⁺	46	15	2.106		7.38	0.42	19
				0.734	11.70	0.70	16
Zn ²⁺	71	. 16	2.099		7.70	0.64	21
				0.736	8.20	0.74	16
Li+	148	11	2 ·159		8.42	0.81	30
				0.784	9.02	0.79	35

* N= number of independent octahedra † $R = R_0 + m\Delta$. ‡ $r = r_0 + m\Delta$.

.

cupied sites relax toward their bonded cation neighbors. Therefore average distances should increase as the occupancy factor decreases. In general, partial occupancy seems to be more prevalent for cations which are weakly bonded to oxygen like Cu⁺, Ag⁺, alkali ions, and large alkaline earths. The most prominent examples are Li and Na compounds. Table 8 summarizes the existent data on some structures with partial cation occupancy. Fig. 6 shows the dependence of mean Li–O bond length on the degree of occupancy. Although the data are not extensive, it is apparent that mean distance increases as occupancy factor decreases. Extrapolation of the Li curve in Fig. 6 to zero occupancy, *i.e.* a tetrahedral Li vacancy, gives 2.10-2.15 Å, which is close to the 2.11 Å found for α -Li₅GaO₄ by Stewner & Hoppe (1971) and for β eucryptite by Tscherry, Schulz & Laves (1972).

Another example of the effects of partial occupancy can be found in the non-stoichiometric feldspar $Sr_{0.84}Na_{0.03}\square_{0.13}Al_{1.69}Si_{2.29}O_8$ reported by Grundy & Ito (1974). The mean Sr-O distance in this compound is 0.03 Å greater than in the stoichiometric $SrAl_2Si_2O_8$ (Chiari, Calleri, Bruno & Ribbe, 1975).

The relation between mean distance and occupancy probably cannot be quantified precisely because the relaxation of oxygen ions will depend on the nature and number of other cation neighbors.

3. Effects of covalence

Changes in interatomic distances due to covalence effects are anticipated in compounds with (1) anions less electronegative than fluorine or oxygen, *i.e.* chlorides, bromides, sulfides, selenides, *etc.* and (2) tetrahedral oxyanions such as the VO_4^{3-} and AsO_4^{3-} groups. The effects of covalence show up as a lack of additivity of the radii and are generally referred to as 'covalent shortening'.

(a) Halides and chalcogenides. Covalence effects can be observed by comparing the relative contraction of cation-anion distances in two different isotypic compounds as the anion becomes less electronegative, *e.g.* Fe^{2+} in Fe₂GeO₄ and Fe₂GeS₄ vs Mg²⁺ in Mg₂GeO₄ and Mg₂GeS₄. Covalence shortens both Fe-S and Mg-S bonds relative to Fe-O and Mg-O bonds, but because of the greater electronegativity of Fe²⁺ (1.8) compared to Mg²⁺ (1.2), the Fe-S bonds are shortened to a greater extent. Thus a 'covalency contraction' parameter (Shannon & Vincent, 1974) can be defined:

$$R_d = \frac{d(\text{Fe-X})^3}{d(\text{Mg-X})^3}$$

where d(Fe-X) = mean Fe-X distance. A similar parameter

$$R_v = \frac{V(\mathrm{Fe}_m \mathrm{X}_n)}{V(\mathrm{Mg}_m \mathrm{X}_n)}$$

compares the volume of an Fe²⁺ compound with that of an isotypic Mg²⁺ compound. To see the effects of covalence on the Fe-X distance relative to the Mg-X distance, the ratio R_v or R_d may be plotted against the difference in electronegativity of the Fe-X bond, $\Delta\chi_{Fe-X}$. Such schematic $R_v - \Delta\chi$ plots are shown in Fig. 7. The reference ions for Cd²⁺ and In³⁺ are Ca²⁺ and Sc³⁺ respectively. Such plots usually show a strong

	Occupancy	-	_		
Compound	factor	Ŕ	Reference		
(a) $^{IV}Li^+$					
Typical	1.00	1.97	Table 1		
LiAlSiO ₄ (β eucryptite)	1.00	2.020 (4)	73 AMMIA	58	681
		2.025 (7)	72 ZKKKA	135	175
$LiAlSi_2O_6$ II (β spodumene)	0.20	2.08 (4)	68 ZKKKA	126	46
· · · · · · · · · · · · · · · ·		2.085 (9)	69 ZKKKA	130	420
$LiAlSiO_{4}$ (β eucryptite)	0.20	2.056 (2)	72 ZKKKA	135	161
Li ₂ Al ₂ Si ₂ O ₁₀	0.40	2·064 (4)	70 ZKKKA	132	118
LiAlSi ₂ O ₆ III	0.33	2.068 (5)	68 ZKKKA	127	327
α -Li _e GaO ₄	0.00	2.11	71 ACBCA	27	616
LiAlSiO ₄	0.00	2.11	72 ZKKKA	135	175
(b) $^{vi}Na^+$					
Typical	1.00	2.42	Table 1		
$Na_2Fe_2Al(PO_4)_1$ (wyllieite)	0.91	2.533 (6)	74 AMMIA	59	280
NaSbO	0.82	2.74	74 JSSCB	9	345
$Na_{2}Fe_{2}Al(PO_{4})_{1}$ (wyllieite)	0.70	2.723 (6)	74 AMMIA	59	280
NaAlSi ₁ O ₂ (high albite)	0.50	2.600 (9)	69 ACBCA	25	1503
NaAl ₁ , O_{17} (β -Al ₂ O ₃)	0.35	2.839 (1)	68 ZKKKA	127	94
NaSbO ₃	0.29	2.65	74 JSSCB	9	345
Na _{2.58} Al _{21.81} O ₃₄ (β -Al ₂ O ₃)	0.25	2.88	71 ACBCA	27	1826
(c) $^{VI}Ag^+$					
Typical	1.00	2.50	Table 1		
AgShO.	0.44	2.64	74 ISSCB	9	345
AgSbO3	0.33	2.04	74 ISSCB	ģ	345
Ag. Al. O.	0.22	2.83	72 ISSCB	4	60
Ag2,4A122O34,2	0 22	2 05	12 30000	-	00

Table 8. Mean distances in structures with partially occupied cation sites

Occupancy

Fig. 6. Mean Li⁺-O bond length vs partial occupancy.

Fig. 7. Covalency contraction parameter, R_v or R_d , vs $\Delta \chi$ for filled and unfilled d shell cations.

Fig. 8. Covalency contraction parameter, R_v or R_d , vs $\Delta \chi$ for hydrides. Solid circles represent ratios of cell volumes of isotypic compounds. Squares represent ratios of the cubed M-H distances to the cubed M-F distances.

dependence of R_v on $\Delta \chi$. For Fe²⁺-Mg²⁺ the Fe²⁺ fluoride volumes are ~110% of the corresponding Mg²⁺ fluoride volumes whereas the Fe²⁺ sulfide volumes are ~96% of the corresponding Mg²⁺ sulfide volumes. Plots for the cations with filled 'd' shells show a markedly smaller dependence on $\Delta \chi$. This appears to be due to the difference in covalence of hybrid orbitals formed from metal 'd' orbitals vs metal 's-p' orbitals.

These relations show that effective ionic radii derived primarily from oxides are not strictly applicable to fluorides – note the change in R_v for Fe²⁺, Co²⁺, Ni²⁺, and Mn²⁺ from fluorides to oxides. This effect is particularly noticeable in $R_v - \Delta \chi$ plots for the pairs Cu⁺-Li⁺ and Ag⁺-Na⁺ (Shannon & Gumerman, 1975). The Cu⁺-Li⁺ and Ag⁺-Na⁺ plots are very steep, *e.g.* the volume of AgF is 120% of the volume of NaF, whereas the volume of Ag₂Se is only 72% of the volume of Na₂Se. Although most of this change arises from covalency, double repulsion effects present in the Li and Na halides described by Pauling (1960) may also play a role.

Covalence effects are useful in explaining certain differences between the effective ionic radii of Table 1 and the ionic radii of Pauling (1927) and Ahrens (1952). Pauling's radii for Cu⁺ (0.96 Å) and Ag⁺ (1.26 Å) are considerably larger than those in Table 1 (0.77 and 1.15 Å respectively). Since these radii were derived from comparison of alkali halide distances, using an equation relating effective nuclear charge and screening constants (Pauling, 1927), they are valid in primarily ionic crystals. The smaller radii in Table 1 are applicable in the more covalent oxides. Extrapolation of $R vs \Delta \chi$ curves such as in Fig. 7 leads to values of 0.91 Å and 1.23 Å for fluorides, which are close to Pauling's ionic values.

A final example of covalence effects concerns M^+-H^- distances. According to Gibb (1962), the radius of the hydride ion is slightly larger than the radius of the fluoride ion. To rationalize the behavior of the hydride ion, the M-H bond has been treated as covalent. Therefore, it is useful to make $R_v vs \Delta \chi$ plots similar to those just discussed for Fe²⁺, Cu⁺, etc. In this case, the reference ion is F⁻ and volumes of certain hydrides are compared to those of isotypic fluorides. The results of this analysis are shown in Fig. 8. The solid circles represent volume ratios, $R_v = V(M_m H_n)/V(M_m F_n)$; open squares represent ratios of typical distances $R_d =$ $d(M-H)^3/d(M-F)^3$. In the more ionic hydrides of Cs, Rb, K, and Na, hydride volumes are considerably larger than those of the fluorides. For the Li and Mg compounds, hydride and fluoride volumes are approximately equal, whereas the more covalent hydrides have increasingly smaller relative volumes than the corresponding fluorides. Fig. 8 partly explains the differences in reported radii. The Morris & Reed (1965) value of 1.53 Å was derived essentially from the large alkali halides, while Gibb's value of 1.40 Å was derived primarily from hydrides of the more electronegative metals such as: Sc, Ti, Y, Zr, Hf, Nb, Ta, and Th. Because of this strong dependence of M-H distances on cation electronegativity, it does not seem very useful to quote a unique radius for H^- .

(b) Tetrahedral oxyanions. Lack of additivity also appears in most small tetrahedral groups and is particularly noticeable for the ions ^{IV}B³⁺, ^{IV}Fe³⁺, ^{IV}Ge⁴⁺, $^{1v}As^{5+}$, $^{1v}V^{5+}$, $^{1v}S^{6+}$, $^{1v}Se^{6+}$, and $^{1v}Cl^{7+}$. The deviations in vanadates have been studied in detail (Shannon & Calvo, 1973b). Assuming that the V-O bond is strongly covalent, and that relatively electronegative cations such as Cu²⁺, Ni²⁺, and Co²⁺ tend to remove electron density from the V-O bond, a V-O bond length increase in Cu, Ni, and Co vanadates is anticipated. Plots of mean radii (\bar{r}) vs mean cation electronegativity (\bar{x}) show a marked slope with a gradual increase in $\bar{r}({}^{1V}V^{5+})$ from vanadates of the alkali and alkaline earth ions to those of Cu, Ni, and Co. Similar plots for other ions, P⁵⁺, As⁵⁺ (Shannon & Calvo, 1973b), B³⁺, Si⁴⁺, Se⁶⁺ (Shannon, 1975), showed the same behavior. The statistical data on the tetrahedra of B³⁺, Si⁴⁺, Ge⁴⁺, P⁵⁺, As⁵⁺, S⁶⁺, Se⁶⁺, Cr⁶⁺, Mo⁶⁺, W⁶⁺, and Cl⁷⁺ have been summarized by Shannon (1975). The slopes of the $\bar{r} vs \bar{\chi}$ plots were greatest for V⁵⁺, Se⁶⁺, and Cl⁷⁺, and least for Si⁴⁺. Although the evidence for covalence as the origin of these effects in the above systems is only indirect, this behavior is consistent with accepted ideas of 'covalent shortening' of bonds.

The evidence for covalent shortening of ^{IV}Fe³⁺-O bonds is more direct. Jeitschko, Sleight, McClellan & Weiher (1976) have found a good correlation between (1) the Fe Mössbauer isomer shift and mean Fe-O distance and (2) $\bar{\chi}$ and mean Fe-O distance (\bar{R}). Thus, in β -NaFeO₂ \bar{R} =1.86 Å and δ =0.18 mm s⁻¹ relative to α Fe whereas in Bi₃(FeO₄) (MoO₄)₂ \bar{R} =1.909 Å and δ =0.282 mm s⁻¹.

4. Effects of electron delocalization

At a pressure of 6.5 kbar SmS (NaCl structure) undergoes a semiconductor to metal transition and a reduction in cell edge from 5.97 to 5.70 Å (Jayaraman, Narayanamurti, Bucher & Maines, 1970). The reduction in cell volume was attributed to a partial conversion of Sm^{2+} to Sm^{3+} ; some of the electrons presumably go into a conduction band.

Electron delocalization effects can also be seen by comparing the volumes of the conducting V sulfides VS, V_7S_8 , V_3S_4 and V_5S_8 with the corresponding Cr sulfides which have localized 'd' electrons (de Vries & Jellinek, 1974). The V compounds have volumes ~ 5% smaller than the corresponding chromium compounds. This does not agree with the relative sizes of V and Cr in oxides and fluorides, *e.g.* $r(^{VI}V^{3+})=0.64$ and $r(^{VI}Cr^{3+})=0.615$ Å. For the sulfides, this unit-cell volume anomaly is not simply attributable to metallic vs semiconducting behavior. While Cr₃S₄, Cr₅S₆, and Cr₇S₈ show a positive temperature dependence of resistivity typical of a metal, magnetic susceptibility measurements indicate Curie–Weiss behavior and therefore nearly localized electrons (van Bruggen, 1969). This is in contrast to the Pauli paramagnetic behavior of the corresponding V sulfides (de Vries & Haas, 1973) characteristic of delocalized electrons. Thus, in SmS and the sulfides of V metallic character accompanied by electron delocalization appears to be associated with reduced bond distances.

A further example of delocalization effects occurs in the compound NaVS₂ (Weigers, van der Meer, van Heinigen, Kloosterboer & Alberink, 1974). The molecular volume of Pauli paramagnetic NaVS₂ I (67.9 Å^3) is significantly less than that of NaVS₂ II (72.7 Å^3). NaVS₂ II is characterized by localized electrons (Jellinek, 1975) and its molecular volume is consistent with that of isotypic NaCrS₂ (71.1 Å^3).

If electron delocalization in oxides results in reduced metal-oxygen distances and thereby an effective increase in valence, radii derived for the ions Mo⁴⁺, Tc⁴⁺, Ru⁴⁺, Rh⁴⁺, W⁴⁺, Re⁴⁺, Os⁴⁺, and Ir⁵⁺ from metallic oxides may not be reliable when applied to insulating oxides. Thus, radii obtained from distances in the metallic phases, e.g. RhO_2 , ReO_2 , and $Cd_2Ir_2O_7$, will be smaller than radii obtained from semiconducting or insulating compounds.* When both types of compounds have been studied, a significant difference in distances is generally found. The mean octahedral $Re^{4+}-O$ distance in insulating $K_4[Re_2O_2(C_2O_4)_4]$. $3H_2O_2(C_2O_4)_4$ (Lis, 1975) of 2.021 (10) Å (r=0.671 Å) is greater than the estimated mean distance in metallic ReO₂ of 1.99 Å (r=0.63 Å). Knop & Carlow's (1974) value of r=0.662Å derived from cell volumes of the insulating Cs_2ReF_6 phases is consistent with the radius of Re⁴⁺ from $K_4[Re_2O_2(C_2O_4)_4]$. 3H₂O. The Re⁵⁺-O distance in Nd₄Re₂O₁₁ (Wilhelmi, Lagervall & Muller, 1970) of 1.987 (12) Å (r=0.607 Å) is significantly greater than the distance in metallic $Cd_2Re_2O_7$ (Sleight, 1975) of 1.93(2) Å (r=0.55 Å). The radii of 0.58 Å derived from XeF₅RuF₆ and 0.60 Å from XeFRuF₆ (Bartlett, Gennis, Gibler, Morrell & Zalkin, 1973) are greater than the radius of 0.565 Å derived from the $r^3 - V$ plot for metallic Cd₂Ru₂O₇. In contrast, however, the Mo⁴⁺ radius of 0.64 Å derived from insulating Li₂MoF₆ (Brunton, 1971) is not greatly different from the radius of 0.65 Å derived from metallic MoO₂ (Brandt & Skapski, 1967).

Although there appears to be ample evidence to show that M-O bond distances in compounds with localized electrons are greater than M-O distances in compounds with delocalized electrons, the data are not yet sufficient to derive a reliable set of radii for semiconducting compounds containing Mo⁴⁺, Tc⁴⁺, Ru⁴⁺, Rh⁴⁺, W⁴⁺, Re⁴⁺, Os⁴⁺, and Ir⁵⁺. This will become possible as additional accurate structure refinements of fluorides, molecular inorganic compounds, and semiconducting oxides containing these ions become available.

^{*} This assumes that metallic character can be equated with delocalized electron behavior in these compounds.

I would like to acknowledge the help of F. Jellinek for providing unpublished data on NaVS₂, F. C. Hawthorne for pointing out numerous structures containing partially occupied cation sites, O. Muller for several sources of radii of unusual ions, M. Fouassier for unpublished data on K₄MO₄ compounds, I. D. Brown for unpublished bond length-bond strength curves, and P.S. Gumerman for assistance with data collection. Structure data on rare earth halides and an analysis of the radii of divalent rare earths provided by H. Bärnighausen were especially valuable. I am particularly indebted to Ruth Shannon for the tabulation of data and proof reading. Finally, I would like to thank R. J. Bouchard, W. H. Baur, and H. Bärnighausen for critically reviewing the manuscript prior to publication.

References

- AHRENS, L. H. (1952). Geochim. Cosmochim. Acta, 2, 155–169.
- BARTLETT, N., GENNIS, M., GIBLER, D., MORRELL, B. &
- ZALKIN, A. (1973). Inorg. Chem. 12, 1717–1721.
- BAUR, W. H. (1972). Amer. Min. 57, 709-731.
- BAUR, W. H. (1974). Acta Cryst. B30, 1195-1215.
- BIRCHALL, T. & SLEIGHT, A. W. (1975). J. Solid State Chem. 13, 118–130.
- BONAMICO, M., DESSY, G., FARES, V. & SCARAMUZZA, L. (1974). J. Chem. Soc. Dalton, pp. 1258–1263.
- BRANDT, B. G. & SKAPSKI, A. C. (1967). Acta Chem. Scand. 21, 661–667.
- BROWN, I. D. (1975). Private communication.
- BROWN, I. D. & SHANNON, R. D. (1973). Acta Cryst. A 29, 266–282.
- BRUGGEN, C. F. VAN (1969). Ph.D. Thesis, Univ. of Groningen.
- BRUNTON, G. (1971). Mater. Res. Bull. 6, 555-560.
- CHIARI, G., CALLERI, M., BRUNO, E. & RIBBE, P. H. (1975). Amer. Min. 60, 111–119.
- Codens for Periodical Titles (1966). Vol. II. ASTM Data series DS23A, Philadelphia.
- DEMPSEY, M. J. & STRENS, R. G. J. (1975). Proc. NATO Conf. on Petrophysics, Newcastle-upon-Tyne, April 22-26.
- EVANS, H. T. JR (1951). Acta Cryst. 4, 377.
- FLYGARE, W. H. & HUGGINS, R. A. (1973). J. Phys. Chem. Solids, 34, 1199-1204.
- FUKUNAGA, O. & FUJITA, T. (1973). J. Solid State Chem. 8, 331–338.
- FUMI, F. G. & TOSI, M. P. (1964). J. Phys. Chem. Solids, 25, 31–43.
- Geller, S., Williams, H. J., Espinosa, G. P., Sherwood, R. C. & Gilleo, M. A. (1963). *Appl. Phys. Lett.* **3**, 21–22.
- GIBB, T. R. P. (1962). Prog. Inorg. Chem. 3, 315-509.
- GREIS, O. & PETZEL, T. (1974). Z. anorg. allgem. Chem. 403, 1–22.
- GRUNDY, H. D. & ITO, J. (1974). Amer. Min. 59, 1319-1326.
- HAWTHORNE, F. C. (1973). The Crystal Chemistry of the Clino-Amphiboles, Ph.D. Thesis, McMaster Univ.
- JAYARAMAN, A., NARAYANAMURTI, V., BUCHER, E. & MAINES, R. G. (1970). Phys. Rev. Lett. 25, 1430-1433.

- JEITSCHKO, W., SLEIGHT, A. W., MCCLELLAN, W. R. & WEIHER, J. F. (1976). Acta Cryst. B 32, 1163-1170.
- JELLINEK, F. (1975). Private communication.
- KÁLMÁN, A. (1971). Chem. Commun. pp. 1857-1859.
- KHAN, A. A. & BAUR, W. (1972). Acta Cryst. B28, 683-693.
- KNOP, O. & CARLOW, J. S. (1974). Canad. J. Chem. 52, 2175–2183.
- LIS, T. (1975). Acta Cryst. B31, 1594–1597.
- McCARTHY, G. J. (1971). Mater. Res. Bull. 6, 31-40.
- MORRIS, D. F. C. & REED, G. L. (1965). J. Inorg. Nucl. Chem. 27, 1715–1717.
- MULLER, O. & ROY, R. (1974). Crystal Chemistry of Non-Metallic Materials. 4. The Major Ternary Structural Families. New York: Springer-Verlag.
- PAULING, L. (1927). J. Amer. Chem. Soc. 49, 765-794.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- PETERSON, J. R. & CUNNINGHAM, B. B. (1967). Inorg. Nucl. Chem. Lett. 3, 327–336.
- PETERSON, J. R. & CUNNINGHAM, B. B. (1968). J. Inorg. Nucl. Chem. 30, 1775–1781.
- RIBBE, P. & GIBBS, G. V. (1971). Amer. Min. 56, 1155-1173.
- SHANNON, R. D. (1975). Proc. NATO Conf. on Petrophysics, Newcastle-upon-Tyne, April 22–26.
- SHANNON, R. D. & CALVO, C. (1973a). Acta Cryst. B29, 1338–1345.
- SHANNON, R. D. & CALVO, C. (1973b). J. Solid State Chem. 6, 538–549.
- SHANNON, R. D. & GUMERMAN, P. S. (1975). J. Inorg. Nucl. Chem. 38, 699–703.
- SHANNON, R. D., GUMERMAN, P. S. & CHENAVAS, J. (1975). Amer. Min. 60, 714–716.
- SHANNON, R. D. & PREWITT, C. T. (1969). Acta Cryst. B25, 925–945.
- SHANNON, R. D. & VINCENT, H. (1974). Struct. Bond. (Berlin), 19, 1–43.
- SILVA, R. J., MCDOWELL, W. J., KELLER, O. L. & TARRANT, J. R. (1974). *Inorg. Chem.* 13, 2233–2237.
- SLEIGHT, A. W. (1975). Private communication.
- SLEIGHT, A. W. & JONES, G. (1975). Acta Cryst. B31, 2748– 2749.
- STEWART, D., KNOP, O., MEADS, R. & PARKER, W. (1973). Canad. J. Chem. 51, 1041–1049.
- STEWNER, F. & HOPPE, R. (1971). Acta Cryst. B27, 616-621.
- TILLMANNS, E. & BAUR, W. H. (1970). Acta Cryst. B26, 1645–1654.
- TILLMANNS, E., GEBERT, W. & BAUR, W. H. (1973). J. Solid State Chem. 7, 69–84.
- TSCHERRY, V., SCHULZ, H., & LAVES, F. (1972). Z. Kristallogr. 135, 175–198.
- VRIES, A. B. DE & HAAS, C. (1973). J. Phys. Chem. Solids, 34, 651–659.
- VRIES, A. B. DE & JELLINEK, F. (1974). Rev. Chim. Miner. 11, 624–636.
- WEIGERS, G., VAN DER MEER, R., VAN HEININGEN, H., KLOOSTERBOER, H. & ALBERINK, A. (1974). Mater. Res. Bull. 9, 1261–1266.
- WILHELMI, K., LAGERVALL, E. & MULLER, O. (1970). Acta Chem. Scand. 24, 3406–3408.
- WOLFE, R. W. & NEWNHAM, R. E. (1969). J. Electrochem. Soc. 116, 832–835.